
T
hè

se
de

do
ct

or
at

N
ov

em
br

e/
20

24
Université Paris - Panthéon - Assas
École doctorale d’Économie, Gestion, Information et Communication

Thèse de doctorat en Informatique

Préparée à l’École Normale Supérieure et Sorbonne Université

soutenue le 25 Novembre 2024

Towards Unclonable Cryptography in the Plain Model

Paul Hermouet

Sous la direction de Céline Chevalier et Elham Kashefi

Membres du jury :
Céline Chevalier Directrice de thèse

PSL University
Université Paris-Panthéon-Assas

Elham Kashefi Directrice de thèse
Sorbonne Université
University of Ediburgh

Prabhanjan Ananth Rapporteur
University of California, Santa Barbara

Christian Majenz Rapporteur
Technical University of Denmark

Anne Broadbent Examinatrice
Université of Ottawa

Stacey Jeffery Examinatrice
CWI
QuSoft

Damien Vergnaud Examinateur
Sorbonne Université

Avertissement
L’université n’entend donner aucune approbation ni improbation aux opinions émises dans
cette thèse ; ces opinions doivent être considérées comme propres à leur auteur.

Résumé

La mécanique quantique génère de nouvelles menaces pour la cryptographie, mais elle
offre également de nouveaux outils pour construire des primitives cryptographiques qui
ne peuvent être réalisées dans le monde classique. Parmi ces primitives figurent les
primitives inclonables, qui exploitent le théorème de non-clonage des états quantiques : la
propriété surprenante qu’ils ne peuvent être copiés. Dans la première partie de cette thèse,
nous donnons un aperçu approfondi des primitives inclonables, et en particulier de trois
primitives principales : la quantum money, fournissant des jetons vérifiables inclonables;
l’unclonable encrytion, un schéma de chiffrement avec chiffrés inclonables; et enfin la
copy-protection, dans laquelle un vendeur envoie des programmes inclonables à ses clients.
Nous définissons chacune de ces primitives, discutons de leur historique, et donnons des
exemples de constructions.

Dans la seconde partie, nous nous concentrons sur la copy-protection et l’unclonable
encryption. Bien que ces primitives aient reçu beaucoup d’attention ces dernières années,
elles ne sont pas encore entièrement comprises. En particulier, décider si elles existent dans
le plain model (dans lequel nous ne pouvons pas utiliser d’oracles aléatoires (quantiques))
reste une question ouverte. Nous progressons vers cet objectif en présentant de nouvelles
constructions pour ces primitives, avec une sécurité dans le plain model, en supposant de
nouvelles conjectures. Pour prouver la sécurité de nos constructions, nous définissons et
prouvons une nouvelle propriété dit de “monogamie” des coset states — sans doute les états
quantiques les plus utiles lorsqu’il s’agit de construire des primitives inclonables. Nous
pensons que cette nouvelle propriété est d’un intérêt indépendant. Comme contributions
indépendantes, nous définissons deux nouvelles propriétés de sécurité pour une autre
primitive inclonable, les tokenized signatures, et présentons une construction satisfaisant
ces nouvelles propriétés. Les preuves de sécurité découlent de notre nouvelle propriété de
“monogamie”, ainsi que d’une variante d’une des propriétés principales des coset states,
que nous définissons et prouvons.

Les protocoles cryptographiques inclonables nécessitent souvent une puissance quan-
tique importante pour toutes les parties impliquées. Comme un tel modèle est peu
susceptible d’être réalisable dans un avenir proche, nous examinons dans une troisième
partie la cryptographie inclonable semi-quantique, dans laquelle des utilisateurs classiques
interagissent avec un serveur quantique puissant. La plupart des primitives inclonables
sont basées sur les coset states, nous construisons donc un protocole de préparation à
distance de ces états, dans lequel un utilisateur classique fournit des instructions au serveur
quantique sur la manière de construire coset states. De plus, cette préparation est effectuée
de manière aveugle, dans le sens où le serveur n’a pas d’information sur les coset states
qu’il a préparés. Cela nous permet d’utiliser ce protocole pour construire des primitives
inclonables de manière semi-quantique.

Abstract

Although it is well known that quantum mechanics enable new threats to cryptography, it
also provides new tools to construct cryptographic primitives that cannot be achieved in
the classical world. Among these primitives are the unclonable primitives, which harness
the non-cloning theorem of quantum states: the surprising fact that they cannot be copied.
In the first part of this thesis, we give an extensive overview of unclonable primitives, and
in particular of three main primitives: quantum money, providing unclonable verifiable
tokens; unclonable encryption, an encryption scheme with unclonable ciphertexts; and
finally copy-protection, in which a vendor sends unclonable programs to clients. For each
of these primitives, we define them, discuss their history, and give example constructions.

In the second part, we focus on copy-protection and unclonable encryption. Despite
receiving a lot of attention in the past years, these primitives are not yet fully understood.
In particular, deciding whether they exist in the plain model (in which we cannot use
any (quantum) random oracles) is still an open question. We progress towards this goal,
by presenting new constructions for these primitives, with security in the plain model,
assuming post-quantum indistinguishability obfuscation, one-way functions, compute-and-
compare obfuscation for the class of unpredictable distributions, and two new conjectures.
In order to prove the security of our constructions, we define and prove a new monogamy-
of-entanglement property for coset states — arguably the most useful quantum states when
it comes to constructing unclonable primitives — which we think is of independent interest.
As independent contributions, we define two new security properties for another unclonable
primitive, tokenized signature schemes, and present a construction satisfying these new
properties. The security proofs follow from our new monogamy-of-entanglement property,
as well as a variant of the direct product hardness property for coset states, that we define
and prove, assuming post-quantum indistinguishability obfuscation, one-way functions,
and compute-and-compare obfuscation for the class of unpredictable distributions.

Unclonable cryptographic protocols often require a significant amount of quantum
power for all involved parties. As such a model is unlikely to be realizable in the near future,
we investigate in a third part semi-quantum unclonable cryptography, in which classical
parties interact with a powerful quantum server. As most of the unclonable primitives
are based on coset states, we construct a remote coset states preparation protocol, that
enables a classical party to instruct the quantum server on how to construct coset states.
Furthermore, this preparation is done in a blind way, in the sense that the server does not
learn which coset states they prepared. This allows us to leverage this protocol to construct
unclonable primitives in a semi-quantum way, assuming post-quantum indistinguishability
obfuscation, one-way functions, and compute-and-compare obfuscation for the class of
unpredictable distributions.

Acknowledgments

In addition to discovering the world of academic research, with all its positive sides and,
let’s admit it, all its less-positive sides as well, I had the chance to meet many amazing
people during this four-year journey.

I would first like to thank my supervisors: Céline for believing in me, giving me this
opportunity of doing the thesis, and for all your useful advice; and Elham for welcoming me
in this fantastic cross-countries team you’ve built, and for sharing your vision of research. I
would also like to thank the members of my jury: the reviewers Prabhanjan and Christian;
and Anne, Stacey, and Damien, for kindly accepting to be part of my jury.

I would then like to thank the people I have collaborated with during these past years,
especially Huy who provided precious support throughout this thesis, but also Michael and
Lucas — your energy is so communicative that it is a real pleasure to work with you guys.

Cryptomania. I had the chance to be part of two teams, the cryptography “CASCADE”
team of ENS, and the quantum information team of LIP6. As my research lies at the
intersection of cryptography and quantum information, being able to go back and forth
(literally) between these two teams proved highly valuable. I spent most of the first half
of my PhD (or at least, when we were not confined) in the classical world, at ENS. I’d
like to thank the permanent members of the team, David, Brice, Phong, and Céline,
and to extend these thanks to Lise-Marie and Valérie for all the administrative help you
provided. I’d also like to thank the PhDs of the team, in particular Lénaïck for all the nice
discussions we had, Léonard, Antoine, and Guirec for the coffee breaks’ endless debates
over pretty much everything; Paola and Henry for your sense of humour; Ky and Robert
for welcoming me in your sunny corner in the open space; Michael for your passion of
beers, and Hugo for your passion of food; and Nicolas for not giving up on FHE.

Quantumania. I spent most of the second half of my thesis in the quantum world, at
Jussieu, where I stopped hearing about reductions, lattices, oil and vinegar - who would
believe that cryptographers are so fond of salads ? - and where I started to be surrounded
by |kets⟩ and ⟨bras|, superposition, and non-locality. On the scientific side, being in this
environment helped me a lot to put a concrete meaning to some blurry notions that I
used in my work. And on the personal side, I met amazing people, some of them became
close friends, even outside the lab (yes, there is a world out there). I have a thought for
the permanent members of the team: Damian, Eleni, Fred, Alex, Marco, and Elham; and
I extend these thanks to Gizem. You’re doing a wonderful job at making this place a
good work environment. I also have a thought, of course, for the many people I’ve met
there and are still taking care of this lab: Adriano, Manon, Kim, Nicolas, Yoann, Verena,
Laura, and Paolo (even if the last four of you won’t be there for long) among many others.
I don’t forget the ones who left us — for some it feels that it was aged ago - especially

x

Pascal, Valentina, and Raja.

The Clique and the 104. I have many thanks to make to the following persons. In
addition to being inspiring researchers, they became friends I could rely on during the last
months of this thesis.

To Dominik for backing me up when it comes to arguing that cryptography is a real
science, Yao for your communicative laugh, Santiago and your surprisingly intense passion
for wine, Matilde for giving me a new first name, and Uta for being the best office mate
I could hope for in these last months. Also, to the countless games of Hanabi and The
Crew we played these last two years, and to everything we shared. I hope we’ll stay close
in the future.

To my current office mates, Anton for your dry-humour, Vanessa for your passion for
philosophy, Naomi for teaching me British slang, Cica (unofficial member of this office)
for being such a badass, and again Uta. Thank you all for making this office a warm and
welcoming place.

The seaside. Aux potes du Discord, Tom et Tristan évidemment, mais aussi à tous les
autres. Pouvoir “brasser” avec vous quand je veux, et me plaindre d’à peu près tous mes
problèmes est un fantastique outil thérapeutique, et ces pauses-cafés et soirées improvisées
furent particulièrement salvatrices durant le (bien trop long) confinement.

À mes vieux potes de La Rochelle, et à toutes ces soirées durant lesquelles je peux
complètement déconnecter du boulot et avoir l’impression de rajeunir de dix ans. Avoir
été capable de rester aussi proches malgré la distance et les différentes directions qu’ont
prises nos vies est précieux.

Et évidemment, last but not least, à mes parents, Philippe et Laurence, et à ma sœur
Suzanne, merci d’être toujours présents.

Contents

Résumé v

Abstract vii

Acknowledgments ix

1 Introduction en Français 1
1.0.1 Plan et contributions . 4

2 Introduction 7
2.0.1 Roadmap and Contributions . 10

3 Preliminaries 13
3.1 Classical Preliminaries . 13

3.1.1 Notations . 13
3.1.2 Circuits and Algorithms . 14
3.1.3 Distributions . 14

3.2 Quantum Preliminaries . 15
3.2.1 Basic Notations . 15
3.2.2 Usual States and Measurement Bases 15
3.2.3 Quantum Gates . 15
3.2.4 Useful Theorems and Lemmas . 15
3.2.5 Circuits and Oracles . 16
3.2.6 Distances . 16

3.3 Cryptographic Preliminaries . 17
3.3.1 Cryptographic Security Games . 17
3.3.2 Symmetric Encryption Scheme . 18
3.3.3 Asymmetric Encryption Scheme . 18
3.3.4 Digital Signature Scheme . 19
3.3.5 One-Way Functions and Pseudorandom Functions 20
3.3.6 Indistinguishable Obfuscation . 22
3.3.7 Subspace Hiding Obfuscation . 23
3.3.8 Compute-and-Compare Obfuscation 23
3.3.9 Leveled Hybrid Quantum Fully Homomorphic Encryption 24

4 Unclonable Cryptography 27
4.1 Introduction . 27
4.2 BB84 and Coset States . 28

4.2.1 BB84 States . 29

xii

Conjugate Coding . 29
Properties of BB84 States . 30

4.2.2 Coset States . 33
Definitions . 33
BB84 States as Coset States . 35
Advantage of Coset States . 36
Properties of Coset States . 37

4.3 Quantum Money . 40
4.3.1 Private Quantum Money . 41

Definitions . 41
Wiesner’s Quantum Money . 42
Attacks on the Wiesner Scheme . 44

4.3.2 Public Quantum Money . 45
History . 46
Definitions . 47
Aaronson and Christiano Mini-Schemes 48

4.3.3 Quantum Lightning . 50
Applications of Quantum Lightning 51
Quantum Lightning Constructions 52

4.3.4 Tokenized Signatures . 53
Definitions . 53
Construction . 54

4.4 Unclonable Encryption . 56
4.4.1 Private Unclonable Encryption . 57
4.4.2 Public Unclonable Encryption . 59
4.4.3 Construction . 61

One-Time to Many-Time Transformation 62
Quantum Money From Unclonable Encryption 64

4.5 Encryption With Certified Deletion . 65
Definitions . 65
Construction . 66
History of Certified Deletion . 68

4.6 Copy-Protection . 69
Definitions . 70
Impossibility Results . 71

4.6.1 Copy-Protection of Point Functions 72
Definitions . 72
Coladangelo, Majenz, and Poremba’s construction 76

4.6.2 Secure Software Leasing . 77
Definitions . 77
Construction . 80

4.6.3 History of Copy-Protection and Secure Software Leasing 81
4.6.4 Single-Decryptor . 82

Definitions . 83
Constructions . 86

xiii

5 Towards Unclonable Cryptography in the Plain Model 89
5.1 Introduction . 90
5.2 Copy-Protection: From Pseudorandom Functions to Point Functions 91

5.2.1 Copy-Protection of Point Functions 91
5.2.2 Copy-Protection of Pseudorandom Functions 93
5.2.3 Construction . 94

5.3 Unclonable Encryption . 97
5.3.1 Unclonable Encryption . 97
5.3.2 Construction . 97

5.4 Locking a Message with Coset States — A Single-Decryptor Construction . 99
5.4.1 Compute-And-Compare Programs and Obfuscation 100
5.4.2 Coset States . 101
5.4.3 Locking A Message with Coset States 102
5.4.4 Single-Decryptor . 103
5.4.5 Construction . 104
5.4.6 On the Need for a New Monogamy-Of-Entanglement Property . . . 106
5.4.7 Issues with Simultaneous Extraction 107

5.5 A Copy-Protection Scheme of Pseudorandom Functions in the Plain Model 108
5.5.1 High-Level Description . 109
5.5.2 Construction . 110

5.6 Monogamy-Of-Entanglement Game with Identical Basis 113
5.6.1 Proof of Upper-Bound . 115
5.6.2 Computational Parallelized Version 117

5.7 Conjectures on Simultaneous Compute-and-Compare Obfuscation 118
5.7.1 Original Compute-And-Compare Obfuscation 118
5.7.2 Non-Local Context . 118
5.7.3 Conjectures . 119
5.7.4 Related Work . 120

5.8 Tokenized Signature in the Plain Model . 121
5.8.1 Tokenized Signatures . 121
5.8.2 Definition . 122
5.8.3 Construction . 124
5.8.4 Direct Product Hardness with Identical Basis 124

6 Semi-Quantum Unclonable Cryptography 127
6.1 Introduction . 127
6.2 Delegating Preparation of Coset States — A First Idea Based on Homo-

morphic Encryption . 128
6.2.1 Remote Coset State Preparation . 128
6.2.2 A Protocol Based on Quantum Fully Homomorphic Encryption . . 130

6.3 Self-Testing Protocol for BB84 States . 133
6.3.1 Extended Noisy Trapdoor Claw-Free Function 133
6.3.2 Committing Using Claw-Free and Injective Functions 134
6.3.3 Self-Testing and Remote Preparation of BB84 States 135

6.4 Self-Testing Coset States . 138
6.4.1 Test Round for Coset States . 139
6.4.2 Self-Testing Protocol for Coset States 141

6.5 Remote Coset State Preparation . 142

xiv

6.5.1 Hiding a Coset State Round Among BB84 Rounds 142
6.5.2 Remote Coset States Preparation for Coset States 142

6.6 Semi-Quantum Copy-Protection . 145
6.6.1 Semi-Quantum Copy-Protection of Point Functions 146
6.6.2 Construction . 147

A Towards Unclonable Cryptography in the Plain Model - Supplementary
Materials 157
A.1 Copy-Protection of Pseudorandom Functions 157

A.1.1 Definitions . 157
A.2 Real-Or-Random Anti-Piracy Security for Single-Decryptors 158
A.3 Proof of Theorem 19 . 159

A.3.1 [CLLZ21] Construction . 159
A.3.2 Proof of Reversed Anti-Piracy Security 160

A.4 Proof of Theorems 20 and 21 . 164
A.4.1 The Coset Version . 164
A.4.2 The BB84 Version . 165
A.4.3 Proof of Theorem 28 . 166
A.4.4 Computational Version . 171
A.4.5 Parallel Repetition of the Game . 171
A.4.6 Proof of Parallel Version of the Monogamy Game 172

B Semi-Quantum Unclonable Cryptography - Supplementary Materials 175
B.1 Preliminaries . 175

B.1.1 Extended Trapdoor Claw-free Functions 175
B.1.2 Sampling in a Quantum Population 176

Classical Sampling Strategies . 176
Quantum Sampling Strategies . 176

B.1.3 Properties of the State-Dependent Distance 177
B.2 Definitions and Protocols . 178

B.2.1 Definitions . 178
B.2.2 Construction . 180

B.3 Rigidity and soundness of protocols 6 to 8 183
B.3.1 Modeling a General Prover . 183

Devices . 183
Success Probabilities of a Device 185

B.3.2 Rigidity Proof of protocol 6 . 186
B.3.3 Rigidity Proof of protocol 7 . 189
B.3.4 Rigidity Proof of protocol 8 . 194
B.3.5 Self-Testing Protocol Soundness . 195

B.4 Proof of Semi-Quantum Monogamy-Of-Entanglement Property of Protocol 5196
B.4.1 Monogamy-of-Entanglement Soundness of protocol 10 196

Chapter

1
Introduction en Français

Faire de la cryptographie, c’est travailler avec l’information. La protéger, bien sûr, mais
aussi la certifier, prouver que l’on possède une certaine information, etc. La cryptographie,
et en particulier le chiffrement, est utilisé depuis des millénaires, mais on peut retracer
la naissance de sa version “moderne” aux travaux de Claude Shannon, le créateur de la
théorie de l’information. Cette nouvelle théorie conduisit à la notion de cryptographie
prouvable, faite d’hypothèses, de théorèmes, de preuves. Lorsqu’on pense à cette science, la
première application qui vient à l’esprit est le chiffrement: deux personnes communiquent
de façon privée en utilisant une clef partagée, qui leur permet de chiffrer et de déchiffrer
des messages, avec la promesse qu’aucun espion lisant les messages chiffrés ne peut accéder
au contenu des messages. Ce modèle simple changea radicalement avec les travaux de
Diffie and Hellman (1976), et la création de la cryptographie asymétrique. Basé sur des
problèmes supposés difficiles à résoudre efficacement — et par là, nous entendons qu’il est
pratiquement impossible de résoudre des grandes instances de ces problèmes — ils conçurent
une manière de rendre publique assez d’information sur un système cryptographique pour
que chacun puisse avoir accès à certaines fonctionnalités du système, tout en n’ayant aucun
accès aux autres fonctionnalités.

Appliquée au chiffrement, cette méthode permet la mise en place de réseaux d’utilisateurs,
tous capables de chiffrer des messages, tandis qu’un seul d’entre eux peut les déchiffrer.
Elle permit également les premières signatures numériques, où une seule partie peut
signer des messages, mais tout le monde peut vérifier les signatures. Finalement, ces
nouvelles possibilités conduisirent à la création des protocoles de sécurité que nous utilisons
maintenant chaque jour dans nos communications, en particulier sur internet.

L’informatique quantique. La mécanique quantique vise à décrire le comportement
de particules infiniment petites. Ces particules présentent des propriétés physiques sur-
prenantes, qui ne se rapportent à rien de ce que nous connaissons dans notre monde
macroscopique. Au lieu d’être dans un état classique bien défini, comme les objets autour
de nous, les particules quantiques (ou états quantiques) peuvent être dans une superposition
de deux états classiques (ou plus !). Dans les années 80, certains scientifiques (Feynman
(2018) and Manin (1980)) commencèrent à imaginer ce que la mécanique quantique pourrait
apporter à l’informatique. Ce fut le début de l’information quantique et l’apparition de
la notion d’ordinateur quantique. Une série de travaux montra que l’exploitation des
propriétés des états quantiques pourrait apporter un avantage significatif pour certaines
tâches spécifiques. Prenons par exemple le travail de Deutsch and Jozsa (1992). Les
auteurs conçurent un algorithme permettant de décider si une fonction binaire inconnue
f : {0, 1}n → {0, 1} est soit constante, soit équilibrée. Pour résoudre ce problème avec une
probabilité de 1, un algorithme classique nécessite au moins 2n−1 + 1 requêtes à la fonction
f dans le pire des cas. En effet, pour être totalement sûr que la fonction est équilibrée, un

2 Chapter 1. Introduction en Français

algorithme classique n’a pas d’autre choix que d’examiner différentes images de f , jusqu’à
en trouver deux différentes, ce qui se produit dans le pire des cas à la 2n−1 + 1 requête
(si au contraire, les 2n−1 + 1 images sont identiques, l’algorithme conclut que la fonction
est constante). Cependant, l’algorithme de Deutsch and Jozsa le résout avec une seule
requête. De manière similaire, Simon (1994) conçut un algorithme quantique de recherche
de période — dont l’objectif est de trouver la période d’une fonction f — nécessitant un
nombre de requêtes à f linéaire, tandis que le nombre de requêtes qu’effectue un algorithme
classique pour la même tâche est exponentiel.

Les menaces des ordinateurs quantiques. Ces deux algorithmes quantiques offrent
tous deux un avantage quantique exponentiel par rapport à leurs meilleurs homologues
classiques, et on pourrait craindre que cet avantage puisse être exploité par des utilisateurs
malveillants pour briser la sécurité des systèmes actuels. Ce n’est en fait pas le cas pour
ces deux algorithmes (du moins pas directement), mais c’est le cas pour un troisième : le
désormais célèbre algorithme de Shor (1999). Comme mentionné plus haut, la plupart
de la sécurité des communications sur internet, y compris les transactions ou le transfert
d’informations sensibles, repose sur un problème conjecturé difficile à résoudre efficacement.
Ce problème du logarithme discret peut se formuler de la manière suivante. Étant donné un
élément x d’un groupe G (par exemple l’ensemble des entiers modulo un certain nombre
premier p), et un autre élément y de G généré par x, trouver l’entier s tel que y = xs.
Bien qu’il soit conjecturé qu’aucun algorithme classique ne soit capable de résoudre ce
problème efficacement pour certains groupes, l’algorithme (quantique) de Shor fournit
un moyen de le faire en temps polynomial. La menace que cet algorithme représente
n’est pas encore concrète, car la construction d’un ordinateur quantique suffisamment
puissant pour l’exécuter sur des instances de problèmes utilisés en pratique est une tâche
extraordinairement difficile, et il semble improbable que cela soit réalisé dans un avenir
proche. Cependant, la communauté cryptographique prend cette menace au sérieux, et
envisage de remplacer les algorithmes utilisés dans les protocoles internet par de nouveaux,
basés sur des problèmes supposés difficiles même pour les ordinateurs quantiques (par
exemple, le problème d’apprentissage avec erreurs, proposé pour la première fois par Regev
(2005)).

Exploiter l’avantage quantique. Comme nous venons de le voir, les ordinateurs quan-
tiques peuvent poser un problème, mais ils nous fournissent également de nouveaux outils
pour construire des primitives cryptographiques avec un niveau de sécurité inatteignable
dans le monde classique. C’est le cas du célèbre protocole de distribution quantique de clés
de Bennett and Brassard (1984), permettant à deux utilisateurs d’échanger une clé, qu’ils
pourront utiliser plus tard pour d’autres applications cryptographiques. Ce protocole de
distribution de clés possède une sécurité dite statistique : contrairement à ses homologues
classiques, sa sécurité provient directement de la théorie de l’information quantique et ne
repose sur aucune hypothèse calculatoire (comme la difficulté de certains problèmes).

Peut-être encore plus surprenant, la mécanique quantique nous permet de construire
des systèmes cryptographiques qui n’existent tout simplement pas dans le monde classique.
Dans cette thèse, nous étudions de manière approfondie les primitives non clonables, dont
la sécurité repose sur le principe de non-clonage : aucun état quantique général ne peut
être copié. Ce principe est la pierre angulaire de la quantum money, définie par Wiesner
(1983). La quantum money permet à une banque de générer des pièces quantiques : des
états quantiques vérifiables par tous, mais impossibles à cloner. Ce domaine n’a pas reçu

3

beaucoup d’attention depuis ce premier travail de Wiesner, du moins jusqu’à récemment.
Au cours de la dernière décennie, de nouvelles primitives ont été imaginées, puis construites,
et nous pouvons maintenant les catégoriser en trois grandes familles, suivant une idée de
Broadbent, Jeffery, Lord, Podder, and Sundaram (2021) :

• la classe d’authenticité, où l’on retrouve la quantum money mentionnée plus haut,
mais aussi les tokenized signatures (Ben-David and Sattath (2023)) : des jetons
quantiques qui peuvent être consommés pour produire des signatures (dans le sens
où l’état quantique est détruit durant le processus de signature) ;

• la classe d’information, où l’on trouve en particulier des schémas de chiffrement
non clonables (Broadbent and Lord (2020)), qui peuvent être considérés comme des
schémas de chiffrement réguliers avec des chiffrés quantiques non clonables ;

• et enfin la classe de fonctionnalité, un ensemble de primitives diverses qui peuvent
toutes être englobées dans la large primitive de copy-protection (Aaronson (2009)):
un moyen de produire des encodages quantiques de programmes classiques, qui
peuvent être évalués sur n’importe quelle entrée, autant de fois que l’on veut, tout
en étant protégés contre la copie.

Copy-protection de point functions dans le modèle standard. Nous nous con-
centrons sur la dernière catégorie, et plus spécifiquement sur la copy-protection des point
functions : des fonctions fy, indexées par une chaîne de bits — ou point — y, qui prennent
en entrée une chaîne de bits x, et renvoient 1 si et seulement si x = y. Un tel schéma
est plus précisément défini comme une procédure qui transforme un point y en un état
quantique (que l’on appelle parfois encodage quantique), que l’on peut utiliser comme
une sorte de clé dans une procédure d’évaluation pour calculer fy sur n’importe quelle
entrée, autant de fois qu’on le souhaite. La sécurité de cette primitive exige qu’aucun
client malveillant, ayant reçu un encodage quantique d’un point y, ne puisse produire
deux états qui pourraient tous deux être utilisés pour calculer fy. De manière informelle,
pour tester si les deux états produits par un tel adversaire sont utiles pour évaluer fy,
on sélectionne au hasard deux chaînes de bits x1 et x2, puis, en considérant chaque état
comme un programme quantique, on exécute le premier état avec l’entrée x1 le second
avec x2. Enfin, on vérifie si les résultats obtenus sont respectivement fy(x1) et fy(x2).

Les travaux antérieurs à cette thèse ont réalisé la copy-protection de point functions
dans différents modèles. En particulier, les constructions de Aaronson, Liu, Liu, Zhandry,
and Zhang (2021), Coladangelo, Majenz, and Poremba (2024), Ananth, Kaleoglu, Li,
Liu, and Zhandry (2022), and Ananth, Kaleoglu, and Liu (2023) reposent sur des oracles
puissants. D’autre part, peu de progrès ont été réalisés dans la construction de copy-
protection de point functions dans le modèle standard, c’est-à-dire sans oracles.1 Nous
posons donc la question suivante :

Existe-t-il des schémas de copy-protection de point functions avec une sécurité
négligeable2dans le modèle standard ?

1Dans des travaux parallèles aux nôtres, Ananth and Behera (2024) ont proposé une construction de
copy-protection de point functions dans le modèle standard, en supposant deux conjectures.

2Par sécurité négligeable, nous entendons que la probabilité qu’un client malveillant réussisse la tâche
décrite plus-haut est négligeable.

4 Chapter 1. Introduction en Français

Cryptographie semi-quantique. La plupart des protocoles cryptographiques quan-
tiques existants impliquent un réseau de clients, chacun possédant son propre ordinateur
quantique, et communiquant entre eux via des canaux de communication quantiques. Bien
que des progrès significatifs aient été réalisés dans la construction d’ordinateurs quantiques
ces dernières années, la construction d’un ordinateur quantique, même pour des tâches
simples, reste extrêmement difficile et coûteuse. Pour cette raison, il est intéressant de
considérer des protocoles cryptographiques impliquant un réseau de clients classiques,
interagissant avec un serveur quantique uniquement via des canaux de communication
classiques. Une série de travaux a montré que, même dans ce modèle restreint, il est
toujours possible de constuire des primitives inatteignables classiquement. Parmi ceux-ci,
nous pouvons citer les travaux de Mahadev (2018) and Brakerski, Christiano, Mahadev,
Vazirani, and Vidick (2018), permettant à un utilisateur classique de s’assurer que le serveur
agit de manière honête, et les travaux de Gheorghiu and Vidick (2019) and Gheorghiu,
Metger, and Poremba (2022) qui proposent tous deux une préparation d’état à distance
pour certaines familles d’états quantiques: un protocole dans lequel un utilisateur classique
donne des instructions à un serveur quantique sur la manière de préparer un certain état,
d’une manière qui empêche le serveur d’apprendre quel état il a préparé.

Cette idée de “déquantification” des protocoles a finalement été appliquée aux primitives
non clonables, avec les travaux de Radian and Sattath (2019) and Shmueli (2022a)
concernant la quantum monney avec une banque classique, et le travail de Shmueli (2022b)
concernant les tokenized signatures. Dans cette thèse, notre objectif est de déquantifier un
ensemble plus large de primitives non clonables, y compris la copy-protection. La plupart
de ces primitives utilisent des coset states: des états quantiques structurés qui possèdent
des propriétés de non-clonabilité très fortes. Plus précisément, un coset state |As,s′⟩ peut
être vu comme la superposition des vecteurs d’un espace affine A + s, et des vecteurs
de son espace dual A⊥ + s′. Les coset states présentent deux principales propriétés de
non-clonabilité. La première, direct product hardness, stipule qu’il est difficile d’extraire un
vecteur de l’espace régulier A+ s, et un de l’espace dual A⊥ + s′. La seconde, monogamy-
of-entanglement, stipule qu’étant donné un coset state |As,s′⟩, il est difficile de produire
deux états quantiques à partir desquels on pourrait extraire, en connaissant la description
du sous-espace A, un vecteur de l’espace régulier (à partir du premier état) et un vecteur
de l’espace dual (à partir du second état). Notre espoir est donc de construire un protocole
de préparation d’état à distance pour les coset states, et de l’utiliser pour déquantifier les
primitives non clonables. Concrètement, nous posons les questions suivantes:

Existe-t-il un protocole de préparation d’état à distance pour les coset states ?
Existe-t-il des schémas de copy-protection avec un vendeur classique et un client

quantique ?

1.0.1 Plan et contributions
Cette thèse a donné lieu à trois articles :
• “Security Models and Cryptographic Protocols in a Quantum World” (à paraître

dans Foundations and Trends in Theoretical Computer Science)

• “Towards Unclonable Cryptography in the Plain Model” (eprint:2023/1825)

• “Semi-quantum copy-protection and more” (publié dans Theory of Cryptography
Conference (2023), eprint:2023/244)

https://eprint.iacr.org/2023/1825
https://eprint.iacr.org/2023/244

5

Comment lire cette thèse. Dans cette thèse, nous avons fait le choix de fournir une
description informelle de nos résultats et des techniques utilisées, en omettant certains
détails et certaines preuves techniques. Notre objectif est de donner aux lecteurs et aux
lectrices une intuition sur la sécurité de nos constructions et sur les problèmes que nous
avons rencontrés. Nous fournissons néanmoins des preuves importantes détaillées dans les
annexes de cette thèse, et nous renvoyons les lecteurs et les lectrices aux articles Chevalier,
Hermouet, and Vu (2023) and Chevalier, Hermouet, and Vu (2024b) pour toutes les preuves
manquantes.

Les chapitres 5 et 6 sont indépendants. Bien que nous pensions qu’il apporte des
éclairages utiles sur les primitives non clonables et les outils pour les construire, nous
n’attendons pas des lecteurs et des lectrices qu’ils ou elles aient lu le chapitre 4 avant
les chapitres 5 et 6, et nous fournissons de brèves explications sur les concepts que nous
utilisons dans chaque chapitre.

Primitives non clonables. Le premier article ci-dessus (Chevalier, Hermouet, and Vu
(2024a)) est une étude sur de nouvelles notions de sécurité pour la cryptographie dans
un monde quantique, ainsi que des protocoles cryptographiques quantiques, y compris la
distribution quantique de clés et les primitives non clonables. Dans le chapitre 4, nous
approfondissons l’étude sur les primitives non clonables et fournissons une présentation
poussée de ces primitives et de leur histoire.

Copy-protection et chiffrement non clonable dans le modèle standard. Dans le
chapitre 5, nous répondons par l’affirmative à la première question mentionnée plus-haut.
Nous présentons une construction pour la copy-protection des fonctions de point dans le
modèle standard, en supposant deux conjectures que nous définissons et discutons dans le
chapitre.

Nouvelles propriétés des coset states. Prouver la sécurité de notre schéma de
copy-protection nécessite de définir et de prouver une nouvelle propriété de monogamy-
of-entanglement pour les coset states. De manière similaire à la propriété de monogamy-
of-entanglement originale, nous montrons qu’il est difficile de produire, étant donné un
coset state, deux états quantiques satisfaisant une certaine propriété, avec une probabilité
supérieure à 1/2. La différence réside dans la propriété que nous considérons: nous montrons
qu’il est difficile d’extraire deux vecteurs (un à partir de chaque état) appartenant au
même espace — soit l’espace régulier, soit l’espace dual — à condition que ce coset soit
inconnu au moment où les deux états sont générés, et qu’il soit seulement décidé et révélé
publiquement après.

Nous prouvons également une généralisation de la propriété de direct product hardness.
À partir d’un coset state |As,s′⟩, il est difficile d’extraire un vecteur dans l’espace régulier
A+ s, et un vecteur dans l’espace dual A⊥ + s′, et il est également difficile d’extraire deux
vecteurs différents dans le même espace (soit dans A+ s, soit dans A⊥ + s′).

Sécurité des tokenized signatures. Nous utilisons ces nouvelles propriétés pour définir
et prouver deux nouvelles propriétés de sécurité pour les tokenized signatures :

• inforgeabilité non clonable, qui demande qu’aucun adversaire ne puisse copier (même
imparfaitement) un jeton de manière à ce que les deux copies puissent être utilisées
pour signer un message arbitraire (inconnu au moment de la copie);

6 Chapter 1. Introduction en Français

• inforgeabilité forte, qui demande qu’aucun adversaire, ayant reçu un jeton, ne puisse
générer deux paires (message, signature) valides et différentes.

Cryptographie non clonable semi-quantique. Dans le chapitre 6, nous répondons
par l’affirmative aux deuxième et troisième questions mentionnées plus-haut. En nous
basant sur les protocoles de Gheorghiu and Vidick (2019), Gheorghiu, Metger, and
Poremba (2022), and Shmueli (2022a), nous construisons un protocole de préparation
d’état à distance pour les coset states. Dans le contexte de la copy-protection, ce protocole
permet à un vendeur classique de donner des instructions à un client quantique pour
construire des coset states aléatoires. À la fin du protocole, le vendeur reçoit la description
des coset states, et un client honnête possède cet état en mémoire. De plus, la sécurité
de ce protocole stipule que la direct product hardness et la monogamy-of-entanglement
des coset states sont préservées. Pour la direct product hardness, cela signifie qu’aucun
client malveillant, après avoir exécuté le protocole de préparation d’état à distance, ne
peut produire des vecteurs dans les deux espaces, régulier et dual; cela se définit de
manière analogue pour la monogamy-of-entanglement. En insérant ce protocole dans des
constructions de copy-protection existantes, nous parvenons à obtenir une copy-protection
semi-quantique pour diverses familles de fonctions.

Chapter

2
Introduction

Cryptography is about working with information. Protecting information, of course,
but also certifying information, committing on information, proving statements, etc.
Cryptography, and in particular encryption, has literally been used for thousands of years,
but we can trace back modern cryptography to the works of Claude Shannon, the inventor
of information theory. This led to the notion of provable cryptography, made of formal
assumptions, theorems and proofs. When thinking of this science, the first application
that comes to the mind is encryption: two persons communicate privately using a shared
key, that allows them to encrypt and decrypt messages, with the promise that no spy,
eavesdropping on them, is able to learn the content of these messages. This simple model
radically changed with the works of Diffie and Hellman (1976), and Merkle (1978), and the
creation of asymmetric cryptography.1 Based on problems conjectured to be hard to solve
efficiently — and by that, we mean that it is nearly impossible to solve large problems’
instances — they designed a way to make public enough information on a cryptographic
system such that anyone can perform some particular task, while being unable to perform
others. Applied to encryption, this allows a network of users, all able to encrypt messages,
while only one of them can decrypt them. This also permitted the first digital signatures,
where only one party can sign messages, but everyone else has the ability to verify the
signatures. This led to the creation of the security protocols we now use every day in our
communications, in particular on the internet.

Quantum computing. Quantum mechanics aims to describe the behavior of infinites-
imally small particles. These particles, indeed, exhibit surprising physical properties,
that do not relate to anything we know in our macroscopic world. Instead of being in a
well-defined classical state, as objects around us, quantum particles (or quantum states)
can be in a superposition over two (or more !) classical states. In the 80s, some scientists
(Feynman (2018) and Manin (1980)) started to imagine what quantum mechanics could
bring to computer science. This was the beginning of quantum information, and the
apparition of the notion of quantum computer. A series of works showed that harnessing
the properties of quantum states could bring significant advantage regarding some specific
tasks. Take the work of Deutsch and Jozsa (1992) for instance. The authors designed an
algorithm deciding whether an unknown binary function f : {0, 1}n → {0, 1} is either con-
stant or balanced. In order to solve this problem with probability 1, a classical algorithm
requires at least 2n−1 + 1 queries to the function f in the worst case. Indeed, to be entirely
certain that the function is balanced, a classical algorithm has no choice but to look at

1Classified research by James Ellis, Clifford Cocks, and Matthew Williamson at the UK Government
Communications Headquarters in the late 1960s and early 1970s achieved what is now known as RSA
cryptosystem and Diffie-Hellman key-exchange. This work was made public by the UK government in
1997.

8 Chapter 2. Introduction

different images of f , until it finds two different ones, which happens in the worst case at
the 2n−1 + 1 query (the algorithm learns that the function is constant if all the 2n−1 + 1
images are the same). The Deutsch and Jozsa algorithm however, solves it with only
one query. Similarly, Simon (1994) designed quantum period finding algorithm — whose
purpose is to find the period of a function f — requiring a linear amount of queries to f ,
while a classical algorithm for the same task provably requires an exponential number of
queries.

The threats of quantum computers. Both these quantum algorithms provide an
exponential quantum advantage over their best classical counterparts, and one might fear
that such power could be leveraged by malicious users to break security of current systems.
This is actually not the case for these two algorithms (at least not directly), but it is for
a third one: the well-known Shor’s algorithm (Shor (1999)). As mentioned above, most
of the security of internet communications, including payment transactions or transfer of
sensitive information, comes from a problem conjectured hard to solve efficiently. This
discrete logarithm problem can be stated as follows. Given an element x from a group
G (for instance the set of integers modulo some prime p), and some other element y of
G, generated by x, find the integer s such that y = xs. While no classical algorithm
is able to solve this problem efficiently, the Shor’s algorithm provides a way to do it in
polynomial time. The threat caused by this algorithm is not concrete yet, as building a
quantum computer powerful enough to run it on problem instances used in practice is
an extraordinary difficult task, and it does not seem that it will be achieved in a near
future. Notice though, that the cryptographic community takes this threat seriously,
and consider replacing the algorithms used in internet protocols by new ones, based on
problems believed to be hard even for quantum computers (e.g. the learning with errors
problem, first proposed by Regev (2005)).

Harnessing quantum power. Quantum computers can thus pose a problem, but they
also provide us new tools in order to construct cryptographic primitives with a security
level unachievable in the classical world. This is the case of the famous quantum key
distribution protocol of Bennett and Brassard (1984), allowing two parties to agree on
a common key, that they can use later for other cryptographic applications. This key
distribution (or key agreement) protocol achieves statistical security: contrary to its
classical counterparts, its security comes directly from quantum information theory, and
does not rely on any computational assumptions (the hardness of some problems).

Perhaps even more surprisingly, quantum mechanics allows us to construct crypto-
graphic systems that simply do not exist in the classical world. In this thesis, we consider
extensively the unclonable primitives, whose security relies on the no-cloning principle: no
general quantum state can be copied. This principle is the corner stone of quantum money,
defined by Wiesner (1983). Quantum money allows a bank to generate quantum coins:
quantum states that are verifiable by everyone, but impossible to clone. This field did not
receive a lot of attention since this first work of Wiesner, at least until recently. In the last
decade, new primitives were imagined, and then constructed, and we can now categorize
them in three main families, following an idea of Broadbent, Jeffery, Lord, Podder, and
Sundaram (2021):

• the authenticity class, in which we find the aforementioned quantum money, but
also the tokenized signatures (Ben-David and Sattath (2023)): quantum tokens that

9

can be consumed to produce signatures;

• the information class, in which we find in particular unclonable encryption schemes
(Broadbent and Lord (2020)), that can be seen as regular encryption schemes with
quantum unclonable ciphertexts;

• and finally the functionality class, a set of different primitives that can all be captured
by the broad copy-protection primitive (Aaronson (2009)): a way of producing
quantum encoding of classical programs, that can be evaluated on any input, as
many times as one wants, while being protected against copy.

Copy-protection of point functions in the plain model. We focus on the last
category, and more specifically on copy-protection of point functions: functions fy, indexed
by a bitstring — or point — y, that take as input a bitstring x, and return 1 if and only if
x = y. Such a scheme is more precisely defined as a procedure that turns a point y into
a quantum state (we sometimes write quantum encoding) that one can use as a sort of
key in an evaluation procedure to compute fy on any input, as many times as they want.
The security of this primitive asks that no malicious client, given a quantum encoding of a
point y, can produce two states that both can be used to compute fy. Informally, testing
whether the two states produced by such an adversary are helpful in evaluating fy is done
by sampling two bitstrings x1 and x2, using each state as a quantum program and running
it on one input (x1 for the first state, x2 for the second one), and finally checking whether
the outcome is fy(x1) or fy(x2) depending on the input.

Works prior to this thesis achieved copy-protection of point functions in different
models. In particular, Aaronson, Liu, Liu, Zhandry, and Zhang (2021), Coladangelo,
Majenz, and Poremba (2024), Ananth, Kaleoglu, Li, Liu, and Zhandry (2022), and Ananth,
Kaleoglu, and Liu (2023) constructions rely on powerful oracles. On the other hand, little
progress has been made in constructing copy-protection of point functions in the plain
model, that is without oracles.2 3 We therefore ask the following question:

Do copy-protection schemes for point functions with negligible security against fully
malicious adversaries exist in the plain model?

Semi-quantum cryptography. Most of existing quantum cryptographic protocols
involve a network of clients, all owning their own quantum computer, and communicating
among themselves through quantum channels. Although significant progress was made in
building quantum computers in the last years, constructing a quantum computer, even
for simple tasks, is still extremely difficult and expensive. For this reason, it might be
interesting to consider cryptographic protocols involving a network of classical clients,
interacting with a quantum server through classical channels only. Interestingly, a series of
work showed that it is still possible to have constructions that are classically impossible,
even in this restricted model. We can cite among them the seminal works of Mahadev
(2018) and Brakerski, Christiano, Mahadev, Vazirani, and Vidick (2018) that allow a
classical user to enforce the server to behave in a certain way, and the works of Gheorghiu

2In a concurrent work, Ananth and Behera (2024) provided a construction copy-protection of point
functions in the plain model, assuming two conjectures.

3Broadbent, Jeffery, Lord, Podder, and Sundaram (2021) presented a construction in the plain model,
without assumptions, secure against a weaker form of adversaries (so-called honest-malicious adversaries).
In this thesis, we only consider fully malicious adversaries.

10 Chapter 2. Introduction

and Vidick (2019) and Gheorghiu, Metger, and Poremba (2022) that both propose a
remote state preparation for some specific families of quantum states: a protocol in which
a classical user instructs a quantum server on how to prepare a certain state, in a way
that the server does not learn the state they prepared.

This idea of “dequantizing” protocols eventually reached unclonable primitives, with
the works of Radian and Sattath (2019) and Shmueli (2022a) for quantum money with a
classical bank, and the work of Shmueli (2022b) for tokenized signatures.4 In this thesis,
our goal is to dequantize a larger set of unclonable primitives, including copy-protection.
Most of these primitives use coset states: structured quantum states that satisfy some
strong unclonability properties. More precisely, a coset state |As,s′⟩ can be seen as the
superposition of the vectors of one coset A+ s, and the vectors of its dual coset A⊥ + s′.
The coset states feature two main unclonability properties. The first one, direct product
hardness, states that it is hard to extract a vector in the regular coset A+ s, and one in the
dual one A⊥ + s′. The second one, monogamy-of-entanglement, states that given a coset
state |As,s′⟩, it is hard to produce two quantum states from which one can extract, given
the description of the subspace A, a vector in the regular coset (from the first state), and
one in the dual coset (from the second state). Our hope is then to construct a remote state
preparation protocol for coset states, and to use it to dequantize unclonable primitives.
Concretely, we ask the following questions:

Does remote state preparation for coset states exits ?

Does copy-protection schemes with a classical vendor and a quantum client exist ?

2.0.1 Roadmap and Contributions
This thesis led to three papers:

• “Security Models and Cryptographic Protocols in a Quantum World” (to appear in
Foundations and Trends in Theoretical Computer Science). This paper provides a
survey on cryptographic notions of security in the context of quantum adversaries;
and on unclonable cryptographic primitives. The content of Chapter 4 is an extended
version of the unclonable primitives part of this paper. The content of this part is
largely the work of the author of this thesis.

• “Towards Unclonable Cryptography in the Plain Model” (eprint:2023/1825). This
paper contains a part on copy-protection of point functions in the plain model, and
a second part on semi-quantum copy-protection. It is a joint work with Quoc-Huy
Vu, who also was a PhD student at the time of writing: the main contributor of the
former part is the author of this thesis, and the main contributor of the second one
is Quoc-Huy Vu.

• “Semi-quantum copy-protection and more” (published in Theory of Cryptography
Conference (2023), eprint:2023/244). This work improves the copy-protection of
point functions construction presented in the previous paper, and is largely the work
of the author of this thesis.

4The construction of Radian and Sattath (2019) is secure assuming the existence of noisy trapdoor claw
free functions, and the ones of Shmueli (2022a) and Shmueli (2022b) are secure assuming the existence of
indistinguishability obfuscation, and the sub-exponential hardness of the learning with errors problem.

https://eprint.iacr.org/2023/1825
https://eprint.iacr.org/2023/244

11

How to read this thesis. In this thesis, we made the choice of providing high-level
description of our results and techniques used, avoiding some details and technical proofs.
Our goal is to give the reader an intuition on the security of our constructions, and on the
problems we encountered. We provide detailed proofs in the appendices of this thesis, and
refer the curious reader to the papers Chevalier, Hermouet, and Vu (2023) and Chevalier,
Hermouet, and Vu (2024b) for all the missing proofs.

Chapters 5 and 6 are independent. Although we think it provides useful insights on
unclonable primitives and tools to construct them, we do not expect the reader to have
read Chapter 4 before Chapters 5 and 6, and provide brief explanations on the concepts
we use in each chapter.

Unclonable primitives. The first paper above (Chevalier, Hermouet, and Vu (2024a))
is a survey on new security notions for cryptography in a quantum world, as well as
quantum cryptographic protocols, including quantum key distribution and unclonable
primitives. In Chapter 4, we extend the survey on unclonable primitives, and provide an
extensive presentation of these primitives and their history.

Copy-protection and unclonable encryption in the plain model. In Chapter 5,
we answer the first question above by the affirmative. We present a construction for
copy-protection of point functions in the plain model, assuming post-quantum indistin-
guishability obfuscation, one-way functions, compute-and-compare obfuscation for the
class of unpredictable distributions, and two new conjectures that we define and discuss in
the chapter.

New properties for coset states. Proving the security of our copy-protection scheme
requires us to define and prove a new monogamy-of-entanglement property for coset states.
Similarly to the monogamy-of-entanglement property, we show that it is hard to produce,
given a coset state, two quantum states satisfying some specific property, with probability
greater than 1/2. The difference lies in the property we consider: we show that it is hard
to extract two vectors (one from each state) that belong to the same coset — either the
regular or the dual one — provided that this coset is unknown at the moment when the
two states are generated, and only decided and publicly revealed afterward.

We also show a strengthening of the direct product hardness. From a coset state |As,s′⟩,
it is hard to extract a vector in the regular coset A+ s, and one in the dual one A⊥ + s′,
and it is also hard to extract two different vectors in the same coset (both in A + s or
both in A⊥ + s′).

Security of tokenized signatures. We use these new properties to define and prove
two new security properties for tokenized signatures:

• unclonable unforgeability, that asks that no adversary can copy (even imperfectly) a
token in such a way that the two copies can be used to sign an arbitrary message
(unknown at the moment of the copy);

• strong unforgeability, that asks that no adversary given a token can generate two
valid and different (message, signature) pairs.

12 Chapter 2. Introduction

Semi-quantum unclonable cryptography. In Chapter 6, we answer the second and
third questions by the affirmative. Based on protocols of Gheorghiu and Vidick (2019),
Gheorghiu, Metger, and Poremba (2022), and Shmueli (2022a), we construct a remote state
preparation protocol for coset states. In the context of copy-protection, this protocol allows
a classical vendor to blindly instruct a quantum client on how to construct random coset
states. In the end of the protocol, the vendor receives the description of coset states, and
an honest client holds these cosets states in their memory. Furthermore, the security of this
protocol states that the direct product hardness and monogamy-of-entanglement properties
of coset states are preserved. For the direct product hardness, it means no malicious client,
after executing the remote state preparation protocol, can output vectors in both the regular
and dual cosets; for the monogamy-of-entanglement, it is defined analogously. Our protocol
is secure assuming post-quantum indistinguishability obfuscation, one-way functions, and
compute-and-compare obfuscation for the class of unpredictable distributions. Plugging
this protocol in existing copy-protection constructions permits us to achieve semi-quantum
copy-protection of various families of functions.

Chapter

3
Preliminaries

We start by providing some classical, quantum, and cryptographic preliminaries and
notations.

Chapter content
3.1 Classical Preliminaries . 13

3.1.1 Notations . 13
3.1.2 Circuits and Algorithms . 14
3.1.3 Distributions . 14

3.2 Quantum Preliminaries . 15
3.2.1 Basic Notations . 15
3.2.2 Usual States and Measurement Bases 15
3.2.3 Quantum Gates . 15
3.2.4 Useful Theorems and Lemmas 15
3.2.5 Circuits and Oracles . 16
3.2.6 Distances . 16

3.3 Cryptographic Preliminaries . 17
3.3.1 Cryptographic Security Games 17
3.3.2 Symmetric Encryption Scheme 18
3.3.3 Asymmetric Encryption Scheme 18
3.3.4 Digital Signature Scheme . 19
3.3.5 One-Way Functions and Pseudorandom Functions 20
3.3.6 Indistinguishable Obfuscation 22
3.3.7 Subspace Hiding Obfuscation 23
3.3.8 Compute-and-Compare Obfuscation 23
3.3.9 Leveled Hybrid Quantum Fully Homomorphic Encryption . . . 24

3.1 Classical Preliminaries

3.1.1 Notations
Throughout this thesis, λ denotes the security parameter: a non-negative integer. The
notation negl(λ) denotes any function f such that f(λ) = λ−ω(1). We write that such a

14 Chapter 3. Preliminaries

function f is negligible. poly(λ) denotes any function f such that f(λ) = O(λc) for some
c > 0. We write that such a function f is polynomial. We write that a function f is
superpolynomial if f(λ) ̸= O(λc) for any c ∈ N. We write that a function f is logarithmic
if f(λ) = O(log(λ)). subexp(λ) denotes any function f such that f(λ) ̸= (2O(λc)) for any
0 < c < 1. We write that such a function f is sub-exponential. We write that a function f
is exponential if f(λ) ̸= O(2λc) for any c ∈ N. In this thesis, we often omit the dependency
on λ when clear from the context. For instance, we sometimes write n instead of n(λ) for
a polynomial function n.

Sets and distributions. For a, b ∈ R, we note [a, b] = {x ∈ R : a ≤ x ≤ b } and
Ja, bK = {x ∈ Z : a ≤ x ≤ b }. When sampling a value x from any distribution D, we
employ the notation x←$ D. When sampling uniformly at random a value x from a set S,
we employ the notation x←$ S. When sampling a value a from a probabilistic algorithm
A, we employ the notation a← A.

For any set I ⊆ J1, nK, and any bitstring x ∈ {0, 1}n, we write x|I the bitstring in
{0, 1}n such that, for any i ∈ J1, nK, the i-th component of x|I is xi if i ∈ I, or 0 otherwise.
We write |S| to denote the cardinal of any set S, and |x| to denote the weight of any
bitstring x, that is the cardinal of {i ∈ J1, nK : xi ̸= 0}.

3.1.2 Circuits and Algorithms
Throughout this thesis, we indifferently write circuits, programs, algorithms, procedures.
By PPT we mean a polynomial-time non-uniform family of probabilistic (classical) circuits.
We sometimes write that a (classical) circuit is efficient (or computationally bounded) if it
is PPT. 1 For a probabilistic circuit C, we write C(x; r) to denote the computation of C
on input x with fixed randomness r. We simply write C(x) to denote the computation of
C on x with a uniformly random r.

An oracle is a function O : S → T that can be queried by an algorithm. We write that
an algorithm A queries an oracle O on input x to denote that A receives O(x) at the cost
of one operation. Whenever an algorithm A has such oracle access to O, we denote it by
AO.
⊤ and ⊥ are special symbols respectively denoting success and failure.

3.1.3 Distributions
We say that two distributions D1 and D2 are statistically (resp. computationally) in-
distinguishable and write D1 ≈ D2 (resp. D1 ≈c D2) if no algorithm (resp. no efficient
algorithm) A can tell them apart:

|Pr[A(x) = 1 : x←$ D1]− Pr[A(x) = 1 : x←$ D2]| ≤ negl(λ)

We sometimes call the probability above distinguishing advantage of A with respect to D1
and D2.

For any distribution D over a set X , we call min-entropy of D the following quantity.

− log2

(
max
x∈X

Pr[x′ = x : x′ ←$ D]
)

1We also say that QPT algorithms (defined in the next section) are efficient.

3.2. Quantum Preliminaries 15

3.2 Quantum Preliminaries

3.2.1 Basic Notations
Throughout this thesis, H denotes an arbitrary finite-dimensional Hilbert space, and use
indices to differentiate between distinct spaces. We use the Dirac notations and write
general pure quantum states as |ψ⟩ or |ϕ⟩. We remove the |·⟩ and write ψ or ϕ to denote
mixed states. Tr denotes the trace operator, and TrA the partial trace operator over a
subsystem HA. We use subscript to denote a pure quantum state on multiple registers,
e.g., |ψ⟩AB or |ψ⟩12.

3.2.2 Usual States and Measurement Bases
The canonical basis of a single-qubit space is written as {|0⟩ , |1⟩} and denoted as rectilinear
or computational basis. We use the notations |+⟩ = (|0⟩+|1⟩)/

√
2 and |−⟩ = (|0⟩−|1⟩)/

√
2,

and denote the basis {|+⟩⟨+|, |−⟩⟨−|} as diagonal or Hadamard basis. Following these
notations, we denote the single-qubit measurement {|0⟩⟨0|, |1⟩⟨1|} as a measurement in the
rectilinear or computational basis, and the single-qubit measurement {|+⟩⟨+|, |−⟩⟨−|} as
a measurement in the diagonal or Hadamard basis.

We denote by EPR pair, and write |ϕ+⟩ the maximally entangled state (|00⟩+ |11⟩)/
√

2.

3.2.3 Quantum Gates
We use U to denote a general unitary quantum gate, and the following notations for the
usual gates.

• X defined as X |0⟩ = |1⟩ and X |1⟩ = |0⟩.

• Z defined as Z |0⟩ = |0⟩ and Z |1⟩ = − |1⟩.

• H defined as H |0⟩ = |+⟩ and H |1⟩ = |−⟩.

In addition, we define the Y -rotation gates as

RY (θ) =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

for any θ ∈ [0, 2π]. For any gate U, we define the controlled-U gates Ctrl-U as

Ctrl-U |0⟩ |ψ⟩ = |0⟩ |ψ⟩
Ctrl-U |1⟩ |ψ⟩ = |1⟩U |ψ⟩

We write Ux for any x ∈ {0, 1}n to denote ⊗n
i=1 Ux

i .

3.2.4 Useful Theorems and Lemmas
We present in this subsection some important theorems and lemmas that we use in this
thesis.

Throughout this thesis, for sake of readability, we use pure states as much as possible,
using sometimes implicitly the following purification theorem.

16 Chapter 3. Preliminaries

Theorem 1 (Purification Theorem). Let ψ be a mixed state on a Hilbert space HA. Then,
there exists an auxiliary Hilbert space HB and a pure state |ψ⟩AB ∈ HA ⊗HB such that
the reduced density matrix of |ψ⟩AB on HA is ψ. In other words,

ψ = TrB (|ψ⟩⟨ψ|AB)

Theorem 2 (Gentle Measurement Lemma). Let ψ be a mixed quantum state, and let E
be a positive operator such that 0 ≤ E ≤ I. The probability of obtaining a measurement
outcome corresponding to E is Tr(Eψ).

If Tr(Eψ) ≥ 1−ϵ, then the post-measurement state ψ′ after performing the measurement
corresponding to E satisfies: ∥∥∥ψ −√Eψ√E∥∥∥

1
≤ 2
√
ϵ,

where ∥ · ∥1 denotes the trace distance between the two states.

3.2.5 Circuits and Oracles
By QPT we mean a polynomial-time non-uniform family of quantum circuits. We sometimes
write that a circuit is efficient (or computationally bounded) if it is QPT.

We refer to quantum implementation of a classical circuit (or program) C, as the
unitary UC defined as follows:

UC |x⟩X |y⟩Y = |x⟩X |C(x)Y ⊕ y⟩

We denote the X register as preimage register, and the Z one as image register. We omit
the dependency on C and simply write U when clear from the context. When writing
that we run a classical circuit (or program) coherently on a quantum state |ψ⟩, or in
superposition over a quantum state |ψ⟩, we mean that we execute the unitary operator
UC on |ψ⟩ and measure the image register in the computational basis.

Similarly to the classical case, we denote a quantum circuit (or program) C having
access to some oracle O as CO.

3.2.6 Distances
Definition 1 (Norms). Let A ∈ L(H) with singular values λ1, . . . , λn ≥ 0. Then, the
trace norm is defined as

∥A∥1 =
∑
i

λi .

Definition 2 (Trace distance). For two quantum states ψ, σ ∈ Pos(H), the trace distance
between them is

∆ (ψ, σ) := 1
2∥ψ − σ∥1.

Definition 3 (Approximate equality, Metger and Vidick (2021, Definition 2.8 and Defini-
tion 2.14)). We overload the symbol “≈” in the following ways (leaving the dependence
on the security parameter implicit in the quantities on the left):

1. Complex numbers: For a, b ∈ C we define:

a ≈ϵ b ⇐⇒ |a− b| = O(ϵ) + negl(λ) .

3.3. Cryptographic Preliminaries 17

2. Operators: For A,B ∈ L(H), we define:
A ≈ϵ B ⇐⇒ ∥A−B∥2

1 = O(ϵ) + negl(λ) .
(We will most frequently use this for (possibly subnormalised) quantum states
A,B ∈ Pos(H).)

3. Operators on a state: For A,B ∈ L(H) and ψ ∈ Pos(H), we define:

A ≈ϵ,ψ B ⇐⇒ Tr
[
(A−B)†(A−B)ψ

]
= O(ϵ) + negl(λ) .

4. Computationally indistinguishable states: For two (families of not necessarily
normalised) states ψ, ψ′ ∈ Pos(H) which are computationally indistinguishable up
to δ (i.e., no QPT distinguisher has advantage exceeding δ in distinguishing ψ from
ψ′2), we write:

ψ
c≈δ ψ′ .

We can also define computational indistinguishability with respect to non-uniform
QPT algorithms with quantum advice, denoted by A := {Aλ, ϕλ}λ∈N, where each Aλ
is the classical description of a poly(λ)-size quantum circuit, and ϕλ is some (not
necessarily efficiently computable) non-uniform poly(λ)-qubit quantum advice. In
this work, we implicitly consider computational indistinguishability with respect to
non-uniform QPT adversaries with quantum advice, unless stated explicitly otherwise.

If we write ≈0, we mean that the quantities are negligibly close. All asymptotic statements
are understood to be in the limits ϵ→ 0 and λ→∞.

3.3 Cryptographic Preliminaries

3.3.1 Cryptographic Security Games
Security of cryptographic primitives is often captured with games: an interactive protocol
between an honest challenger, and a potentially dishonest player, or adversary. In the end
of the game, depending on the transcript, the challenger decides whether the adversary
wins the game or not, and we are interested in particular in their winning probability.
These games are parameterized by a security parameter λ and therefore, the adversary’s
behavior, and the winning probability p(λ), depends on this parameter. We typically
ask that the winning probability of any adversary is asymptotically upper-bounded by
some function, the most notable cases being p(λ) ≤ negl(λ), and p(λ) ≤ 1/2 + negl(λ). In
this thesis, we abuse the notation and only write p instead of p(λ) when mentioning this
winning probability.

Uniform and non-uniform adversaries. We distinguish two types of adversaries: A
uniform adversary A is an efficient algorithm A that takes as inputs of any size, while a
non-uniform adversary is a family of efficient algorithms {Aλ}λ∈N, each one designed for
the specific security parameter λ. A non-uniform adversary can also be seen as a uniform
one A, augmented with some advice {|ψλ⟩}λ∈N (quantum if A is QPT, or classical is A is
PPT): A receives as input the advice corresponding to the security parameter.

In this thesis, unless specified otherwise, we only consider non-uniform adversaries.
2A distinguisher D is a CPTP map from the input state to a classical single-qubit state (i.e. a

distribution over {0, 1}). The distinguishability is the trace distance between D(ψ) and D(ψ′).

18 Chapter 3. Preliminaries

3.3.2 Symmetric Encryption Scheme
Definition 4 (Symmetric Encryption Scheme). A symmetric encryption scheme for
a message space M is composed of three algorithms (KeyGen,Enc,Dec) defined in the
following way:

• k ← KeyGen(1λ). The key generation algorithm KeyGen takes as input a security
parameter, and returns a classical key k.

• c← Enc(k,m). The encryption algorithm Enc takes as input a key k and a message
m ∈M and returns a ciphertext c.

• m← Dec(k, c). The decryption algorithm Dec takes as input a key k and a ciphertext
c and returns a message m.

In the following, we assume that M⊆ {0, 1}n for some integer n.
A symmetric encryption scheme must in addition satisfy the following properties.

Correctness. The encryption of a message must always decrypt to this message. More
precisely, for all message m ∈M,

Pr
[
Dec(k, c) = m : c← Enc(k,m)

k← KeyGen(1λ)

]
≥ 1− negl(λ)

Indistinguishability. We distinguish one-time indistinguishability from many-time
indistinguishability. For a private unclonable encryption scheme to have one-time indistin-
guishability, the encryption of two messages must be computationally indistinguishable.
More formally, for all m,m′ ∈M,

{Enc(k,m) : k← KeyGen(1λ)}
≈c

{Enc(k,m′) : k← KeyGen(1λ)}

Many-time indistinguishability is defined analogously, except that the adversary is
given this time a polynomial number of ciphertexts. More formally, for all κ = poly(λ),
and all m1, . . . ,mκ,m

′
1, . . . ,m

′
κ ∈M,

{(Enc(k,m1), . . . ,Enc(k,mκ)) : k← KeyGen(1λ)}
≈c

{(Enc(k,m′1), . . . ,Enc(k,m′κ)) : k← KeyGen(1λ)}

3.3.3 Asymmetric Encryption Scheme
Definition 5 (Asymmetric Encryption Scheme). An asymmetric encryption scheme for
a message space M is composed of three algorithms (KeyGen,Enc,Dec) defined in the
following way:

• (sk, pk) ← KeyGen(1λ). The key generation algorithm KeyGen takes as input a
security parameter, and returns a pair of secret and public keys (sk, pk).

• c← Enc(pk,m). The encryption algorithm Enc takes as input a public key pk and a
message m ∈M and returns a ciphertext c.

3.3. Cryptographic Preliminaries 19

• m← Dec(sk, c). The decryption algorithm Dec takes as input a secret key sk and a
ciphertext c and returns a message m.

In the following, we assume that M⊆ {0, 1}n for some integer n.
An asymmetric encryption scheme must in addition satisfy the following properties.

Correctness. The encryption of a message must always decrypt to this message. More
precisely, for all message m ∈M,

Pr
[
Dec(sk, c) = m : c← Enc(pk,m)

(sk, pk)← KeyGen(1λ)

]
≥ 1− negl(λ)

Indistinguishability against chosen plaintext attacks. An asymmetric encryption
scheme has indistinguishability against chosen plaintext attacks (IND-CPA) security if no
efficient adversary A wins the following game with non-negligible advantage over 1/2.

• A challenger samples a pair of keys (sk, pk)← KeyGen(1λ).

• The challenger sends pk to A.

• A sends a pair of messages (m0,m1) to the challenger.

• The challenger samples a bit b ∈ {0, 1}.

• The challenger computes c← Enc(pk,mb).

• The challenger sends c to A.

Let b∗ denotes the outcome of A. A wins if and only if b∗ = b.
We sometimes denote this property as semantic security.

3.3.4 Digital Signature Scheme
Definition 6 (Digital Signature Scheme). A digital signature scheme for a message space
M is composed of three algorithms (KeyGen, Sign,Verify) defined in the following way:

• (sk, vk) ← KeyGen(1λ). The key generation algorithm KeyGen takes as input a
security parameter, and returns a pair of signing and verification keys (sk, vk).

• sig ← Sign(sk,m). The signature algorithm Sign takes as input a signing key sk and
a message m ∈M and returns a signature s.

• b← Verify(vk,m, s). The verification algorithm Verify takes as input a verification
key vk, a message m, and a signature s and returns a bit b, indicating whether s is a
valid signature for m (b = 1), or not (b = 0).

A digital signature scheme must in addition satisfy the following properties.

Correctness. The signature of a message produced by the signing procedure must be
valid. More precisely, for all message m ∈M,

Pr
[
Verify(vk,m, s) = 1 : s← Sign(sk,m)

(sk, vk)← KeyGen(1λ)

]
≥ 1− negl(λ)

20 Chapter 3. Preliminaries

Existential (weak) unforgeability. A digital signature scheme has existential (weak)
unforgeability if no efficient adversary A wins the following game with non-negligible
probability.

• A challenger samples a pair of keys (sk, vk)← KeyGen(1λ).

• The challenger sends pk to A

• The challenger and A perform a number of rounds (A decides when to stop) as
follows:

− A sends a message m to the challenger.

− The challenger runs Sign(sk,m), and sends the outcome to A.

Let (m, s) denotes the (message, signature) pair output by A, and Q the set of messages
sent by A to the challenger. A wins if and only if Verify(vk,m, s) = 1, and m ̸∈ Q.

Existential strong unforgeability. A digital signature scheme has existential strong
unforgeability if no efficient adversary A wins the following game with non-negligible
probability.

• A challenger samples a pair of keys (sk, vk)← KeyGen(1λ).

• The challenger sends pk to A

• The challenger and A perform a number of rounds (A decides when to stop) as
follows:

− A sends a message m to the challenger.

− The challenger runs Sign(sk,m), and sends the outcome to A.

Let (m, s) denotes the (message, signature) pair output by A, and Q the set of pairs
(message, signature), where the messages are the ones sent by A to the challenger, and
the signatures the challenger’s answers. A wins if and only if Verify(vk,m, s) = 1, and
(m, s) ̸∈ Q.

3.3.5 One-Way Functions and Pseudorandom Functions
Definition 7 (One-Way Function). A function f : X → Z is a one-way function if there
exists an efficient implementation of it and if it is hard to invert. That is, for any efficient
adversary A.

Pr[A(f(x)) = x : x←$ X] ≤ negl(λ)

Pseudorandom functions. A pseudorandom function (first defined by Goldreich,
Goldwasser, and Micali (1984)) consists of a keyed function PRFk and a set of keys K
such that for a randomly chosen key k←$ K, the output of the function PRFk(x) for any
input x in the input space X “looks” random to an efficient adversary, even when given a
polynomially many evaluations of PRFk(·). Puncturable pseudorandom functions have an
additional property that some keys can be generated punctured at some point, so that
they allow to evaluate the pseudorandom function at all points except for the punctured

3.3. Cryptographic Preliminaries 21

points. Furthermore, even with the punctured key, the pseudorandom function evaluation
at a punctured point still looks random.

Punctured pseudorandom functions are originally introduced by Boneh and Waters
(2013), Boyle, Goldwasser, and Ivan (2014), and Kiayias, Papadopoulos, Triandopoulos,
and Zacharias (2013), who observed that it is possible to construct such puncturable
pseudorandom functions for the construction from Goldreich, Goldwasser, and Micali
(1984), which can be based on any one-way function (as shown by Håstad, Impagliazzo,
Levin, and Luby (1999)). We provide formal definitions for pseudorandom function, and
its puncturable variant, in the following.

Definition 8 (Pseudorandom Function). A family of keyed functions {PRFK}k∈K with
domain X and codomain Z ⊂ {0, 1}nZ for some nZ ∈ N is a pseudorandom functions
family if there is an efficient key generation procedure KeyGen, taking as input a security
parameter, and outputting a key in K, and if no efficient adversary A can win the following
game with non-negligible advantage over 1/2.

• A challenger samples a key k← KeyGen(λ).

• The challenger sets O0 = PRFk, and samples O1 uniformly at random from the set
of functions with domain X and codomain Z.

• The challenger samples a bit b←$ {0, 1}.

• The challenger sends Ob to A.

A outputs b∗ and wins the game if b∗ = b.

Definition 9 (Puncturable Pseudorandom Function). A family of pseudorandom functions
PRFk : X → Z is puncturable if there is an addition key space Kp and three efficient
algorithms pPRF = ⟨KeyGen,Puncture,Eval⟩ such that:

• k← KeyGen(1λ). The key generation algorithm KeyGen takes the security parameter
1λ as input and outputs a key k ∈ K.

• k{x} ← Puncture(k, x). The puncturing algorithm Puncture takes as input a pseudo-
random function key k ∈ K and x ∈ X , and outputs a key k{x} ∈ Kp.

• y ← Eval(k{x}, x′). The evaluation algorithm takes as input a punctured key
k{x} ∈ Kp and x′ ∈ X , and outputs a classical string y ∈ Z.

We require the following properties.

• Functionality preserved under puncturing. For all λ ∈ N, for all x ∈ X ,

Pr
[
∀x′ ∈ X \ {x} : Eval(k{x}, x′) = Eval(k, x′)

∣∣∣∣∣ k←$ KeyGen(1λ)
k{x} ←$ Puncture(k, x)

]
= 1.

• Pseudorandom at punctured points. For every efficient adversary A = (A1,A2),

22 Chapter 3. Preliminaries

and every λ ∈ N, the following holds:∣∣∣∣∣∣∣∣∣Pr

 1← A2(k{x∗}, z, τ)

∣∣∣∣∣∣∣∣∣
(x∗, τ)← A1(1λ, τ)

k←$ KeyGen(1λ)
k{x∗} ←$ Puncture(k, x∗)

z ← Eval(k, x∗)



−Pr

 1← A2(k{x∗}, z, τ)

∣∣∣∣∣∣∣∣∣
(x∗, τ)← A1(1λ, τ)

k←$ KeyGen(1λ)
k{x∗} ←$ Puncture(k, x∗)

z ←$ Z


∣∣∣∣∣∣∣∣∣ ≤ negl(λ),

where the probability is taken over the randomness of KeyGen, Puncture, and A1.

Denote the above probability as AdvpPRF(λ,A). We further say that a puncturable family
of pseudorandom functions is δ-secure, for some concrete negligible function δ(λ), if for all
efficient adversaries A, the advantage AdvpPRF(λ,A) is smaller than δ(λ)Ω(1).

The following definitions are taken from Coladangelo, Liu, Liu, and Zhandry (2021).

Definition 10 (Statistically injective pseudorandom function). A family of statistically
injective (puncturable) pseudorandom functions with (negligible) failure probability ε(·)
is a (puncturable) pseudorandom functions family {PRFk}k such that with probability
1− ε(λ) over the random choice of key k← KeyGen(1λ), we have that PRFk(·) is injective.

Definition 11 (Extracting pseudorandom function). A family of extracting (puncturable)
pseudorandom functions with error ε(·) for min-entropy k(·) is a (puncturable) pseudoran-
dom functions family {PRFk}k mapping nX (λ) bits to nZ(λ) bits such that for all λ ∈ N,
if X is any distribution over nX (λ) bits with min-entropy greater than k(λ), then the
statistical distance between (k,PRFk(X)) and (k, r ← {0, 1}m(λ)) is at most ε(·), where
k← KeyGen(1λ).

3.3.6 Indistinguishable Obfuscation
Definition 12 (Indistinguishability Obfuscator Barak, Goldreich, Impagliazzo, Rudich,
Sahai, Vadhan, and Yang (2001)). A uniform PPT algorithm iO is called an indistin-
guishability obfuscator for a classical circuit class {Cλ}λ∈N if the following conditions are
satisfied:

• For all security parameters λ ∈ N, for all C ∈ Cλ, for all input x, we have that

Pr
[
C ′(x) = C(x) : C ′ ← iO(1λ, C)

]
= 1.

• For any (not necessarily uniform) distinguisher D, for all security parameters λ ∈ N,
for all pairs of circuits C0, C1 ∈ Cλ, we have that if C0(x) = C1(x) for all inputs x,
then

Advio(1λ,A) = |Pr
[
D(iO(1λ, C0)) = 1

]
− Pr

[
D(iO(1λ, C1)) = 1

]
| ≤ negl(λ).

We further say that iO is δ-secure, for some concrete negligible function δ(λ), if for all
QPT adversaries A, the advantage Advio(λ,A) is smaller than δ(λ)Ω(1).

3.3. Cryptographic Preliminaries 23

3.3.7 Subspace Hiding Obfuscation
In Zhandry (2019) and Shmueli (2022a), it is shown that indistinguishability obfuscation
schemes have the property of subspace hiding.

Lemma 1 (Zhandry (2019) and Shmueli (2022a)). Let iO an indistinguishability obfus-
cation scheme, and assume that injective one-way functions exist. Let S = {Sλ}λ∈N a
subspace S ⊆ Fλ2 . For a subspace S ′, denote by CS′ a classical circuit that checks member-
ship in S ′. Then, for every constant δ ∈ (0, 1] we have the following indistinguishability:

{iO(CSλ
)}λ∈N

c≈0 {iO(CT) | T ←$ SSλ
}λ∈N,

where SSλ
is the set of all subspaces of dimension λ− λδ that contain Sλ.

3.3.8 Compute-and-Compare Obfuscation
Definition 13 (Point Functions). Let n ∈ N. A family of point functions {PFy}y∈{0,1}n ,
parameterized by points y is defined as follows.

PFy(x) =
{

1 if y = x
0 otherwise.

for any x ∈ {0, 1}n.

Definition 14 (Compute-and-Compare Programs). Let X ,Z,M three sets. Given a
function f : X → Z along with a lock-value ℓ ∈ Z and a message m ∈M, we define the
compute-and-compare program:

CC[f, ℓ,m](x) =
m if f(x) = ℓ,

⊥ otherwise .

When the function, lock-value, and message of a compute-and-compare program are not
useful in the context, we will sometimes simply write CC in lieu of CC[f, ℓ,m].

Definition 15 (Unpredictable Distribution). Let D = {Dλ}λ∈N be a family of distributions
over pairs of the form (CC[f, ℓ,m], aux) where CC[f, ℓ,m] is a compute-and-compare
program and aux is some (possibly quantum) auxiliary information. We say that D is an
unpredictable distribution if for all efficient algorithm A, we have that

Pr
[
A(1λ, f, aux) = y : (CC[f, ℓ,m], aux)← Dλ

]
≤ negl(λ).

Note that, in this thesis, we abuse the notation and write f to denote indifferently the
function f or an efficient description of f .

Definition 16 (Sub-Exponentially Unpredictable Distribution). Let D = {Dλ}λ∈N be
a family of distributions over pairs of the form (CC[f, ℓ,m], aux) where CC[f, ℓ,m] is a
compute-and-compare program and aux is some (possibly quantum) auxiliary information.
We say that D is a sub-exponentially unpredictable distribution if for all efficient algorithm
A, we have that

Pr
[
A(1λ, f, aux) = y : (CC[f, ℓ,m], aux)← Dλ

]
≤ 1

subexp(λ) .

24 Chapter 3. Preliminaries

Definition 17 (Compute-and-Compare Obfuscator). A PPT algorithm CC-Obf is said to
be a compute-and-compare obfuscator for a family of unpredictable distributions D = {Dλ}
if:

• CC-Obf is functionality preserving: for all x,

Pr
[
CC-Obf(1λ,CC)(x) = CC(x)

]
≥ 1− negl(λ)

• CC-Obf has distributional indistinguishability: there exists an efficient simulator Sim
such that {

CC-Obf(1λ,CC), aux
}
≈c

{
Sim(1λ,CC.param), aux

}
,

where (CC, aux)← Dλ, and CC.param denotes the input size, output size, and circuit
size of CC, that are not required to be obfuscated.

Theorem 3 (Coladangelo, Liu, Liu, and Zhandry (2021)). Assuming post-quantum
indistinguishable obfuscation, and the hardness of the learning with errors (LWE) prob-
lem, there exist compute-and-compare obfuscators for sub-exponentially unpredictable
distributions.

3.3.9 Leveled Hybrid Quantum Fully Homomorphic Encryption
We rely on quantum fully homomorphic encryption of a specific structure, which was
defined in Shmueli (2022a).

Definition 18 (Leveled Hybrid Quantum Fully Homomorphic Encryption). A hybrid
leveled quantum fully homomorphic encryption scheme is given by QFHE := ⟨KeyGen,Enc,
QOTP,Eval,Dec⟩ with the following syntax:

• (sk, pk)← KeyGen(1λ, 1ℓ). A PPT algorithm that given a security parameter λ ∈ N
and target circuit bound ℓ ∈ N, outputs a classical key pair (sk, pk).

• |ψ⟩(x,z) ← QOTP((x, z), |ψ⟩). A QPT algorithm that takes as input an n-qubit
quantum state |ψ⟩ and classical strings as quantum one-time pad keys x, z ∈ {0, 1}n
and outputs its quantum one-time padded transformation |ψ⟩(x,z) := ZzXx |ψ⟩. We
sometimes call these one-time pad keys (x, z) the Pauli keys. Furthermore, if |ψ⟩ is
a classical string m, we ignore the Pauli key z and write QOTP(x,m) whose output
is x⊕m.

• ct← Enc(pk, x). A PPT algorithm that takes as input a classical string x ∈ {0, 1}∗
and the public key pk and outputs a classical ciphertext ct.

• x← Dec(sk, ct). A PPT algorithm that takes as input a classical ciphertext ct and
the secret key sk and outputs a classical string x.

• (|ϕ⟩(x
′,z′) , ctx′,z′)← Eval(pk, (|ψ⟩(x,z) , ctx,z), C). A QPT algorithm that takes as input

a general quantum circuit C, a quantum one-time pad encrypted state |ψ⟩(x,z) and a
classical ciphertext ctx,z of the pads. The evaluation outputs a quantum one-time
padded encryption of some quantum state |ϕ⟩ encrypted under new keys (x′, z′) and
a classical ciphertext ctx′,z′ .

3.3. Cryptographic Preliminaries 25

The scheme satisfies the following.

• Semantic Security. For every polynomial m(·), ℓ(·), and QPT algorithm A :=
{Aλ, ρλ}λ∈N there exists a negligible function negl(·) such that∣∣∣∣∣∣∣∣∣Pr

 1← A2(m0 ⊕ x, ctx)

∣∣∣∣∣∣∣∣∣
(m0,m1)← A1(1λ)

(pk, sk)←$ KeyGen(1λ, 1ℓ(λ))
x←$ {0, 1}m(λ)

ctx ← Enc(pk, x)



−Pr

 1← A2(m1 ⊕ x, ctx)

∣∣∣∣∣∣∣∣∣
(m0,m1)← A1(1λ)

(pk, sk)←$ KeyGen(1λ, 1ℓ(λ))
x←$ {0, 1}m(λ)

ctx ← Enc(pk, x)


∣∣∣∣∣∣∣∣∣ ≤

1
2 + negl(λ),

where λ ∈ N and m0,m1 ∈ {0, 1}m(λ).

− Denote the above probability as AdvQFHE(λ,A). We further say that QFHE is
δ-secure, for some concrete negligible function δ(λ), if for all QPT adversaries
A, the advantage AdvQFHE(λ,A) is smaller than δ(λ)Ω(1).

• Homomorphism. For every polynomial ℓ := ℓ(λ) there is a negligible function
negl(·) such that the following holds. Let (pk, sk) ← KeyGen(1λ, 1ℓ), let x, z equal-
length strings, let ctx,z ← Enc(pk, (x, z)), let C a quantum circuit of size ≤ ℓ, let |ψ⟩
a |x|-qubit state input for C. Then, ∆ (D0, D1) ≤ negl(λ), where D0, D1 are defined
as follows.

− D0: The output state is |ψ′⟩ ← C(|ψ⟩).

− D1: The output state generated by first evaluating

(|ϕ⟩(x
′,z′) , ctx′,z′)← Eval

(
pk, (|ψ⟩(x,z) , ctx,z), C

)
,

and then decrypting (x′, z′)← Dec(sk, ctx′,z′), |ϕ⟩ ← QOTP
(
(x′, z′), |ϕ⟩(x

′,z′)
)
.

Chapter

4
Unclonable Cryptography

In this chapter, we provide a survey on unclonable primitives. This chapter is based on
our following work: Chevalier, Hermouet, and Vu (2024a).

Chapter content
4.1 Introduction . 27
4.2 BB84 and Coset States . 28

4.2.1 BB84 States . 29
4.2.2 Coset States . 33

4.3 Quantum Money . 40
4.3.1 Private Quantum Money . 41
4.3.2 Public Quantum Money . 45
4.3.3 Quantum Lightning . 50
4.3.4 Tokenized Signatures . 53

4.4 Unclonable Encryption . 56
4.4.1 Private Unclonable Encryption 57
4.4.2 Public Unclonable Encryption 59
4.4.3 Construction . 61

4.5 Encryption With Certified Deletion 65
4.6 Copy-Protection . 69

4.6.1 Copy-Protection of Point Functions 72
4.6.2 Secure Software Leasing . 77
4.6.3 History of Copy-Protection and Secure Software Leasing 81
4.6.4 Single-Decryptor . 82

4.1 Introduction
Unclonable cryptography is a field that aims to create cryptographic primitives with
unclonable properties. In order to give a comprehensive, yet informal definition of these
primitives, we describe how they are defined. We first consider a (classical) cryptographic
primitive. Take for instance a symmetric encryption scheme. Such a scheme is composed
of what we call “objects”, all with “interesting crypto properties”. These objects are the
keys — whose property is to be sufficient to decrypt ciphertext; and ciphertexts — whose

28 Chapter 4. Unclonable Cryptography

property it is to hide messages that one can recover only if they know the corresponding
key.1

Defining an unclonable primitive out of a cryptographic primitive consists in defining a
similar primitive where one of these objects is now a quantum state, and is unclonable in
the sense that it is infeasible to produce two (even imperfect) copies of one of these quantum
objects in such a way that the two copies conserve the object properties. Continuing with
the example above, assume that we choose to create an unclonable primitive using the
ciphertexts of an encryption scheme as unclonable objects. The unclonability property
in this context requires that there is no way to generate two copies of a ciphertext (now
represented by a quantum state) such that both copies leak information on the encrypted
message, even given the secret key.

Of course, these unclonable primitives cannot be constructed using classical cryptog-
raphy only, as in this case, the objects would be represented as classical data, which
are always copyable. It is possible however, to think of these primitives in the context
of quantum cryptography, where we can use quantum states to encode objects. The
no-cloning theorem, that states that it is impossible to clone an unknown quantum state,
gives the hint that it might be possible to construct unclonable primitives this way. This
of course requires more involved tools — the no-cloning theorem, in particular, is not
really usable as is — and we will present them in the following sections.

Several unclonable objects has been investigated in the literature, and we can establish
the following hierarchy inspired by Broadbent, Jeffery, Lord, Podder, and Sundaram (2021).
This hierarchy is composed of three classes of primitives. The first one, the authenticity
class, produces unclonable objects which are not meant to store any data, but are verifiable
in some way. The second class, the information class, is about unclonable objects storing
data. Finally, the third class, the functionality class, produces unclonable program-like
objects. Among these classes, we will consider different types of primitives. For each of
these classes, we will present primitives featuring unclonability properties in the sense
we described above, and we will also present primitives that feature a different sort of
property: either the “quantum object” can be consumed to produce a verifiable certificate
of destruction — we name this property certified deletion — or can be returned to some
authority, who can then verify that the returned state is indeed the one which has been
given in the first place — we name this property revocability.

This chapter is articulated as follows. In Sections 4.2.1 and 4.2.2, we first present,
the two main families of quantum states used in unclonable cryptography: the BB84
and coset states. Then, we cover primitives in the authenticity class: quantum money in
Section 4.3 and tokenized signature in Section 4.3.4. In Sections 4.4 and 4.5, we present
unclonable encryption and certified deletion as primitives in the information class. We
finally present primitives in the functionality class: copy-protection and secure software
leasing in Sections 4.6 and 4.6.2.

4.2 BB84 and Coset States
As we already mentioned, constructing unclonable cryptography makes use of the fact that
no unknown quantum state can be copied. Although this no-cloning theorem lies in the
core of this field, it is by itself not enough to construct unclonable protocols. For that, we

1Remark that we do not consider messages as interesting cryptographic objects as they are merely
bitstrings without any “interesting property”.

4.2. BB84 and Coset States 29

need more specific states, that we can sample efficiently, with nice mathematical structures,
and strong unclonable properties that we can leverage in the constructions. Two major
families of states are considered in the literature, namely BB84 states — simpler — and
coset states — entangled but more powerful quantum states. In this section, we present
these two families, their properties, and show their similarities, and their differences.

4.2.1 BB84 States
In their seminal paper, Bennett and Brassard (1984) introduced a scheme in which two
users agree on a key in an information secure way, that is, no malicious eavesdropper can
get any relevant information on the key. This result shows a clear separation between
classical and quantum cryptography, as such key-agreement protocol cannot exist with
information theoretic security in the classical world. On top of it, this protocol strikes by
its simplicity, and in particular, it requires manipulating only the following four single-qubit
states: |0⟩, |1⟩, |+⟩, and |−⟩. Although this protocol was not the first one to harness the
power of these four states2, they were later called the BB84 states.

In this section, we present these states and some of their most interesting properties,
and give intuition on why they can be so useful for quantum — and more particularly
unclonable — cryptography.

Conjugate Coding

Conjugate Coding has been introduced by Wiesner in the 60s as a technique to protect
classical information. However, as the field of quantum information was at this time not
as developed as it is now, this technique did not get a lot of attention, and we had to wait
until Wiesner (1983)’s paper to be published. The idea of conjugate coding is to encode
classical information into quantum states, using two conjugate bases. We will denote these
bases as the computational basis {|0⟩ , |1⟩} and the Hadamard basis {|+⟩ , |−⟩}, where

|+⟩ = |0⟩+ |1⟩√
2

and |−⟩ = |0⟩ − |1⟩√
2

Definition 19 (BB84 State). We denote by BB84 state any quantum state composed
of n ∈ N∗ registers, where each register is one of the following states: {|0⟩ , |1⟩ , |+⟩ , |−⟩}.
We sometimes write n-long BB84 state to specify how many registers compose the state.

Remark that |+⟩ = H |0⟩, and |−⟩ = H |1⟩ — where we recall that H denotes the
Hadamard gate. This allows us to describe any n-long BB84 state by two n-long bitstrings
x and θ — that we sometimes call the value and the basis of the state respectively. We
then denote a state described by (x, θ) as |xθ⟩ and define it as

|xθ⟩ =
n⊗
i=1

Hθi |xi⟩

Sampling a BB84 state. In the rest of this section, and in the other parts of this
thesis, we sometimes need to prepare random BB84 states as part of a cryptographic
protocol. It turns out that it is more convenient for the security analysis of such protocols
when the basis θ of a BB84 state is balanced, in the sense that it has the same number

2As we will see later, they were indeed used in Wiesner (1983).

30 Chapter 4. Unclonable Cryptography

Basis θ 0 0 1 1
Bit x 0 1 0 1
Encoding |xθ⟩ = Hθ |x⟩ |0⟩ |1⟩ |+⟩ |−⟩

Table 4.1: Conjugate Coding of a 1-Long BB84 State.

of 0 and 1. Then, we say that sampling a BB84 state’s description consists in sampling
a uniformly random n-long bitstring x as the value of the state, and a balanced n-long
bitstring θ as its basis More precisely, we sample the basis uniformly randomly in the
set {θ ∈ {0, 1}n : |θ| = n/2}, which can be done efficiently by applying a random
permutation to the bitstring 11 . . . 100 . . . 0 starting with n/2 ‘ones’, and ending with n/2
‘zeros’.

Construction 1: Sampling a BB84 State’s Description
Let n ∈ N.

• Sample x←$ {0, 1}n.

• Sample θ ←$ {θ ∈ {0, 1}n : |θ| = n/2}.

• Return (x, θ).

Properties of BB84 States

We describe in the following some of the most useful properties of BB84 states in the
context of unclonable cryptography. Except for the first one, all the properties we describe
below aim to capture the unclonable nature of BB84 states.

Mutually unbiased basis. A first interesting property is that the two basis — compu-
tational and Hadamard — are as distant as possible as each others, as we can see on the
Y plane of the Bloch sphere (whose illustration is given in Figure 4.1). This results in the
following property. Consider a 1-long BB84 state, prepared in one of this basis. Measuring
this state in the other basis, results in a uniformly random outcome, that is 0 or 1 with
probability 1/2 each.

Direct product hardness. Consider a player Alice, playing a game in which she is
given a 1-long random BB84 state |xθ⟩, and must guess the value x. Crucially, she does
not have any information on the basis θ. One trivial strategy would be then to measure
the state in a random basis, computational or Hadamard, and to return the outcome. A
simple analysis shows us that such a strategy yields the correct value with probability 3/4
(with probability 1 if the basis choice is the correct one, and 1/2 otherwise). This strategy
is actually not the best one, as we can show that Alice can make a correct guess with
probability close to 0.85 by measuring in a carefully chosen basis.3

Importantly, when the game is parallelized, that is when Alice is given an n-long random
BB84 state and asked to guess its value, her winning probability becomes negligible.4 In

3She precisely makes a correct guess with probability cos2(π/8) by measuring the qubit in the basis
{cos(π/8) |0⟩+ sin(π/8) |1⟩ ,− sin(π/8) |0⟩+ cos(π/8) |1⟩}.

4This is a consequence of a theorem by Bartusek and Khurana (2023), informally stating that learning
the bits xi such that θi = 0 from a given random BB84 state |xθ⟩ destroys all information on the XOR of

4.2. BB84 and Coset States 31

x

z

y

|+⟩

|−⟩

|1⟩ |0⟩

Figure 4.1: The Bloch sphere. The surface of the sphere represents the set of all qubits, in
particular the four BB84 states. We denote as Y plan (or sometimes XZ plan) of the Bloch
sphere the plan orthogonal to the y axis.

Challenger
(x, θ)←$

A
|xθ⟩

x∗
Winning Condition:

x∗ = x

Figure 4.2: Direct product hardness game for BB84 states. (x, θ) is a random n-long BB84 state’s
description. No adversary wins this game with non-negligible probability in n.

the rest of this paper, we refer to this result on the upper bound of the winning probability
of this game as direct product hardness.

Theorem 4 (Direct Product Hardness of BB84 States). Let n = poly(λ). For any
adversary A,

Pr

x∗ = x :
x∗ ← A(|xθ⟩)
θ ←$ {θ ∈ {0, 1}n : |θ| = n/2}
x←$ {0, 1}n

 ≤ negl(λ)

We provide an illustration of this theorem in Figure 4.2.

Monogamy-of-entanglement. This direct product hardness property already gives us
some intuition on the unclonability of BB84 states. In the following, we present a stronger
property highlighting the fact that BB84 states cannot be efficiently split between two
parties. By that, we mean that it is impossible to share a BB84 state between two parties,
in a way that both shares contain the value of the state.

We capture this property through a game — played by three players, Alice, Bob, and
Charlie — that follows a template that we extensively use in the context of unclonable
cryptography. A player Alice is given a random BB84 state, and is asked to split it.
That is, she performs an arbitrary quantum operation on it, and returns a two-registers
quantum state (intuitively, think that Alice tries to produce a copy of the original state,
or something as close as possible). She then sends the first register to Bob, and the second

the bits xi such that θi = 1.

32 Chapter 4. Unclonable Cryptography

one to Charlie. Bob and Charlie are then given the basis of this BB84 state, and are both
asked to return the value of the state. Tomamichel, Fehr, Kaniewski, and Wehner (2013)
prove that Bob and Charlie cannot both answer correctly. Later, Culf and Vidick (2022)
prove a stronger result, that is this game is still hard to win if Bob only needs to correctly
guess the values of qubits that have been encoded in the rectilinear basis, and the same
goes for Charlie for the qubits encoded in the diagonal basis. As this strong version of
monogamy-of-entanglement implies the regular one, we simply denote the strong version
as monogamy-of-entanglement in the following of this thesis.

Theorem 5 (Monogamy-Of-Entanglement of BB84 States). Define the following game,
between a challenger and a triple of adversaries A, B, C, and parametrized by a security
parameter λ. During the game, B and C are not allowed to communicate.

• Setup phase:

− The challenger samples an n-long BB84 state description: r ←$ {0, 1}n, and
θ ←$ {0, 1}n such that |θ| = n/2.

− The challenger sends |xθ⟩ to A.

• Splitting phase:

− A prepares a bipartite quantum state |ψ∗⟩12.

− A sends |ψ∗⟩1 to B and |ψ∗⟩2 to C.

• Challenge phase: The challenger sends θ to both B and C.

Let x∗1 denotes the output of B, and x∗2 denotes the output of C. Let I be the set of indices
at which θi = 0: I = {i ∈ J1, nK : θi = 0}. They win if and only if x∗1 = x|I and x∗2 = x|Ī .5

The monogamy-of-entanglement property states that no triple of adversaries can win
this game with non-negligible probability. In other words, for any triple of adversaries A,
B, and C,

Pr


x∗1 = x|I
∧

x∗2 = x|Ī

:

x∗1 ← B(|ψ∗⟩1 , θ), x∗2 ← C(|ψ∗⟩2 , θ)
|ψ∗⟩12 ← A(|xθ⟩)
θ ←$ {θ ∈ {0, 1}n : |θ| = n/2}
x←$ {0, 1}n

 ≤ negl(λ)

We provide an illustration of this theorem in Figure 4.3.

Variants of monogamy-of-entanglement. Different variants of this monogamy-of-
entanglement property have been investigated in the literature. Broadbent and Culf (2023)
investigate for instance the effects of letting Charlie know the answer before answering
himself, and Chevalier, Hermouet, and Vu (2024b) investigate the effects of instructing
Bob and Charlie to return a vector corresponding to the same basis value (0 or 1). As we
use it in the next chapter, we give a brief description of the latter variant in the following.

5Recall that, for any bitstring y ∈ {0, 1}n — or equivalently any vector y ∈ Fn
2 — and any subset

I ⊆ J1, nK, we write y|I to denote the bitstring in {0, 1}n — or vector in Fn
2 — whose components are yi

at indices i ∈ I, and 0 elsewhere.

4.2. BB84 and Coset States 33

Challenger
(x, θ)←$

A
|xθ⟩

B
|ψ∗⟩1

θ

x∗1

C|ψ∗⟩2

θ

x∗2

Winning Condition:
x∗

1 = x|I

∧
x∗

2 = x|Ī

Figure 4.3: Monogamy-of-entanglement game for BB84 states. (x, θ) is a random n-long BB84
state’s description. No triple of adversaries can win this game with non-negligible.

Consider the following game. Alice is given a random BB84 state |xθ⟩, and a bit b. As
before, she needs to split the state, and share it between Bob and Charlie. The latter are
then asked to return the values of the qubits that have been encoded in the computational
basis if b = 0, or in the Hadamard one if b = 1. As Alice receives b, she can measure the
state in the corresponding basis, and forwards the outcome to Bob and Charlie, who can
then both answer correctly with probability 1. Chevalier, Hermouet, and Vu (2024b) asks
the following question.

What happens when b is not given to Alice, but instead to Bob and Charlie after they
receive their part of the split state ?

Of course, a trivial strategy to win this game is for Alice to make a guess about b, and
play the trivial game above. The winning probability is then the probability that she
guesses correctly, that is 1/2. We ask whether the entanglement shared between Bob and
Charlie can help them go beyond this probability. It turns out that the answer is no: their
winning probability is upper bounded by 1/2.

4.2.2 Coset States
In this section, we present the coset states introduced by Coladangelo, Liu, Liu, and
Zhandry (2021), and discuss how they compare to BB84 states, and how we can leverage
them to achieve public unclonable cryptography. Throughout all this section, we sometimes
omit the normalization factor of quantum states for sake of readability.

Definitions

We start by defining subspace and coset states.
Definition 20 (Subspace State). Let A a linear subspace of Fn2 . The corresponding
subspace state, denoted by |A⟩ is the following state.

|A⟩ =
∑
a∈A
|a⟩

34 Chapter 4. Unclonable Cryptography

Note that we often use a matrix of elements in Fn2 to represent the subspace A, and
also denote this matrix as A. In this case, the columns of this matrix represent the basis
of the subspace.

Definition 21 (Coset State). Let A a linear subspace of Fn2 , and s, s′ two vectors of Fn2 .
The corresponding coset state, denoted by |As,s′⟩, is the subspace state |A⟩, quantum-one-
time-padded by s and s′.

|As,s′⟩ = XsZs′ ∑
a∈A
|a⟩

=
∑
a∈A

(−1)a·s′ |a+ s⟩

In the following, we denote the subspaces A+ s and A⊥ + s′ by regular and dual cosets
respectively, where A⊥ := {x ∈ Fn2 | x · a = 0∀a ∈ A}.

An important property of a coset state is that applying a Hadamard gate to it yields
its dual coset state.

Theorem 6 (Dual Coset State). Let |As,s′⟩ a coset state, and A⊥ be the dual subspace of
A in Fn2 . Then, applying Hadamard gates to all the qubits of |As,s′⟩ yields the dual coset
state |A⊥s′,s⟩.

Proof. We give a brief proof of why this is true for a subspace state in the following. The
proof extends easily to the coset states. Applying Hadamard gates to all the qubits of |A⟩
yields

H⊗n |A⟩ = H⊗n
∑
a∈A
|a⟩

=
∑
a∈A

∑
y∈{0,1}n

(−1)y·a |y⟩

=
∑

y∈{0,1}n

(∑
a∈A

(−1)y·a
)
|y⟩

Then, fix y ∈ {0, 1}n, and let ρy : A→ {0, 1} be the function that maps a ∈ A to y · a. As
ρy is linear, either ρy(a) = 0 for all a ∈ A, or the set of a that map to 0 and the set of a
that map to 1 have the same cardinality. By definition of a dual subspace, the first case
happens only when y ∈ A⊥, and the second when y ̸∈ A⊥. Thus, the only vectors in the
resulting state with non-zero weight are the ones belonging to A⊥ — and they all have
the same weight.

Sampling coset states. As for BB84 states, we define what we mean by sampling
a coset state (description) randomly. In particular, we will sample coset states whose
subspace dimension is half the dimension of the whole space. When the coset state we
sample is n-qubits long, we write that we sample an n-long coset state.

Construction 2: Sampling a Coset State’s Description
Let n = N.

• Sample a matrix A←$ {A ∈ Fn×n/2
2 : A is full-rank}.

4.2. BB84 and Coset States 35

• Sample two vectors s, s′ ←$ Fn2 .

• Return (A, s, s′).

BB84 States as Coset States

In this subsection, we give some intuition regarding how BB84 states and coset states
compare. In particular, we show that BB84 states are actually coset states, with some
restrictions.

When describing n-long BB84 states, we considered them as tensor products of n
qubits. In this subsection, we rather look at them as superposition of classical states, and
show that these classical states form a specific structure, namely they are vectors in an
affine subspace. To see that, let us construct an n-long BB84 state |xθ⟩ step by step. At
first, prepare an initial state |0 . . . 0⟩. Let i be the first index at which θi = 1. The first
step is to apply a Hadamard gate to the i-th qubit. The i-th qubit becomes |0⟩+ |1⟩ — or
|0⟩ − |1⟩ depending on the value of xi — and the others are left unchanged. Applying this
gate then results in the following superposition of two classical states6.

|x1 . . . xi−1⟩ |0⟩ |xi+1 . . . xn⟩
+(−1)xi |x1 . . . xi−1⟩ |1⟩ |xi+1 . . . xn⟩

The second step is to apply another Hadamard gate, this time to the j-th qubit, where j
denotes the second index at which θj = 1. Similarly, the j-th qubit becomes |0⟩+(−1)xj |1⟩,
and the rest of the qubits are left unchanged, resulting in the following superposition of
four classical states

|x1 . . . xi−1⟩ |0⟩ |xi+1 . . . xj−1⟩ |0⟩ |xj+1 . . . xn⟩
+(−1)xi |x1 . . . xi−1⟩ |1⟩ |xi+1 . . . xj−1⟩ |0⟩ |xj+1 . . . xn⟩
+(−1)xj |x1 . . . xi−1⟩ |0⟩ |xi+1 . . . xj−1⟩ |1⟩ |xj+1 . . . xn⟩

+(−1)xi⊕xj |x1 . . . xi−1⟩ |1⟩ |xi+1 . . . xj−1⟩ |1⟩ |xj+1 . . . xn⟩

Note in particular that, if we look at qubits at positions i and j in the classical states
above, we have all possible pairs of classical qubits, that is |00⟩ , |10⟩ , |01⟩ , |11⟩. This will
be important in the following. The next steps consist in applying again Hadamard gates
to the remaining qubits whose index correspond to the 1 in θ (and are not i or j). In
the same way as described above, each application of Hadamard gate doubles the number
of classical states in the superposition, and, after all Hadamard gates are applied, the
qubits on which a Hadamard gate has been applied form all possible n/2-uple of classical
qubits. The other half of the qubits are not affected by these gates, and remain unchanged.
Remark that, to know whether the phase of a classical state |u⟩ in the superposition is
−1 or 1, we count the number of indices k ∈ {1, . . . , n} such that (1) uk = 1, and (2) we
applied a Hadamard gate at index k (that is, xk = uk = 1). The parity of this number of
indices gives us the phase: 1 if it is even, 0 if it is odd. In other words, the phase of a
classical state |u⟩ is (−1)u|I ·x|I .7

These observations give another, equivalent, definition for BB84 states.
6In all this subsection, we remove the global phase for sake of clarity.
7Recall that, for any bitstring y ∈ {0, 1}n — or equivalently any vector y ∈ Fn

2 — and any subset
I ⊆ J1, nK, we write y|I to denote the bitstring in {0, 1}n — or vector in Fn

2 — whose components are yi

at indices i ∈ I, and 0 elsewhere.

36 Chapter 4. Unclonable Cryptography

Definition 22 (BB84 State). Let n ∈ N, and x, θ ∈ {0, 1}n. Let I = {i ∈ J1, nK : θi = 1}.
The BB84 state, described by (x, θ), is the state∑

u

(−1)u|I ·x|I |u⟩

where we sum over the set {u ∈ {0, 1}n : ui = xi ∀i ̸∈ I}.
Remark that this set is actually an affine space. By treating binary strings as vectors

in Fn2 , and denoting the linear space span{ei : i ∈ I}8 by A,this set is A+x|Ī . This allows
us to equivalently define the BB84 state described by (x, θ) as the following coset state:∑

a∈A
(−1)a|I ·x|I |a+ x⟩

= Xx|Ī Zx|I |A⟩
= |Ax|Ī ,x|I ⟩

Thus, BB84 states are subfamily of coset states, where the subspace A is spanned by
n/2 canonical vectors depending on the basis θ, and the two vectors s, s′ are defined by
both the value x, and the basis θ of the BB84 state.

Example 4.2.1. Consider the following BB84 state, with value x = 10001110 and basis
θ = 00111100. The “BB84 way” of writing this state is |xθ⟩ = |10 + +−−10⟩. However,
as we saw above, we can write it in a “coset way”. Let A ∈ (Fn2)n/2 the following matrix
representing a subspace of Fn2 , and define s and s′ as x|Ī and x|I respectively.

A =



0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


s =



1
0
0
0
0
0
1
0


s′ =



0
0
0
0
1
1
0
0


Then we have |xθ⟩ = |As,s′⟩.

Advantage of Coset States

We just saw that coset states are more complex versions of BB84 states. In particular, as
mentioned by Coladangelo, Liu, Liu, and Zhandry (2021), they are highly entangled, while
BB84 states are not. One natural question to ask then is why using coset states instead of
BB84 states. The answer lies in the fact that one can give the ability to others to verify a
coset state without revealing its description, while this is not possible with BB84 states.
To see that, we define two games, where a player Alice is given a quantum state (a random
BB84 state in the first game, and a random coset state in the second one) and must guess
its description. To help her, she is also given access to a quantum oracle that verifies if the
state given as input is the state she was given. Of course, a trivial strategy would be to
simply go through all possible BB84 (or coset) states, until one passes the verification, but
this would require an exponentially large number of queries. We rather wonder what is

8ei denotes the i-th canonical vector of Fn
2 , that is ei,i = 1, and ei,j = 0 for all j ̸= i.

4.2. BB84 and Coset States 37

the best strategy Alice can apply if she can only perform a polynomial number of queries.
It turns out that, even with this restriction, Alice can completely learn the description
of a BB84 state, while Coladangelo, Liu, Liu, and Zhandry (2021), based on the same
kind of analysis for subspace state by Ben-David and Sattath (2023), showed that this is
impossible with coset states (they actually prove a stronger result, namely direct product
hardness that we present in the next subsection).

We describe in the following a strategy that allows Alice to win the first game with
probability 1. As we will see in the next section, this strategy has been used by Lutomirski
(2010) in the context of attacking a quantum money protocol.

Winning strategy for the BB84 game. At the beginning of the game, Alice is given
a random n-long BB84 state |xθ⟩. She is also given access to a verification oracle Ox,θ
that she can query a polynomial number of times only. We consider that this oracle
implements the binary-outcome projective measurement {|xθ⟩⟨xθ|, I− |xθ⟩⟨xθ|}. To learn
the i-th bit of θ, Alice applies a X gate to the i-th qubit of |xθ⟩, then queries the oracle
with the resulting state. If θi = 0, then the resulting state is orthogonal to the original
one, hence the verification fails with probability 1. Otherwise, applying the X does not
change the state (up to a global phase), hence the verification accepts with probability
1. Thus, depending on the oracle’s answer, Alice knows with certainty the value of θi.
She can thus undo the X, and measure the i-th qubit in the basis θi to get the value xi.
Now, she simply has to restore the i-th qubit (that is replacing it by |xθi

i ⟩) and apply this
procedure to all the qubits.

Properties of Coset States

The coset states feature the same kind of unclonability as BB84 states, in the sense that
they also have direct product hardness, and monogamy-of-entanglement properties. These
properties are actually even stronger for coset states, as the winning probability in the
game does not increase when the adversaries are allowed to query (a limited amount of
time) membership oracles for the regular coset and its dual. Such a membership oracle,
defined for an affine subspace A + s, takes as input a vector x ∈ Fn2 , and returns 1 if
x ∈ A + s, and 0 otherwise. In the rest of this thesis, we denote the pair of oracles
(OA+s,OA⊥+s′) by OA,s,s′ .

Direct product hardness. Consider a game in which a player Alice, given a random
coset state, and a limited membership oracle access (polynomial number of queries) to
the regular and dual cosets, is asked to return one vector in the regular coset, and one
in the dual coset. Asking for only one of these vectors would make the task easy, even
without the oracles, as Alice would just have to measure the state in the computational
basis to get a vector in the regular coset. However, such a measurement makes the coset
state collapse to this vector state, and Alice would not be able to get a vector in the dual
coset. The direct product hardness, proven by Coladangelo, Liu, Liu, and Zhandry (2021),
property states that Alice cannot actually find a significantly better strategy in this game.
In other words, winning this game is hard.

Theorem 7 (Direct Product Hardness of Coset States). Let n ∈ N. For any adversary A,

38 Chapter 4. Unclonable Cryptography

Challenger
(A, s, s′)←$

AOA,s,s′
|As,s′⟩

v∗, w∗

Winning Condition:
q = poly(n)

∧
v∗ ∈ A+ s

∧
w∗ ∈ A⊥ + s′

Figure 4.4: Direct product hardness game for coset states. (A, s, s′) is a random n-long coset
state’s description, and q denotes the number of queries to the oracle OA,s,s′ . No adversary wins
this game with non-negligible probability in n.

let q denotes the number of queries A makes to the oracle OA,s,s′ . Then,

Pr


q = poly(n)

∧
v∗ ∈ A+ s
∧

w∗ ∈ A⊥ + s′

:
(v∗, w∗)← AOA,s,s′ (|xθ⟩)
s, s′ ←$ Fn2
A←$ {A ∈ Fn×n/2

2 : A is full-rank}

 ≤ negl(n)

We provide an illustration of this theorem in Figure 4.4.

Coladangelo, Liu, Liu, and Zhandry (2021) proved that the membership oracle OA,s,s′

can be instantiated using a pair of iO-obfuscated programs P̂A+s, P̂A⊥+s′ defined as follows.

PA+s(u) =
{

1 if u ∈ A+ s
0 otherwise. PA⊥+s′(u) =

{
1 if u ∈ A⊥ + s′

0 otherwise.

Theorem 8 ((Computational) Direct Product Hardness of Coset States). Let n ∈ N. For
any QPT adversary A,

Pr

 v∗ ∈ A+ s
∧

w∗ ∈ A⊥ + s′
:

(v∗, w∗)← A(|xθ⟩ , (P̂A+s, P̂A⊥+s′))
s, s′ ←$ Fn2
A←$ {A ∈ Fn×n/2

2 : A is full-rank}

 ≤ negl(n)

Monogamy-of-entanglement of coset states. Consider the following game, played
by Alice, Bob, and Charlie, all given limited oracle access (polynomial number of queries)
to regular and dual coset’s membership oracles. Alice, given a random coset state, is asked
to split it, and share the outcome between Bob and Charlie. The latter are then given a
description of the linear subspace corresponding to the coset state. Bob is asked to return
a vector in the regular coset, and Charlie in the dual coset. Coladangelo, Liu, Liu, and
Zhandry (2021) prove that a weaker version of the game — in which Bob and Charlie
are both asked a pair of vectors in the regular and dual coset — was hard to win, and
conjectured the hardness of the strong version. This was proven shortly after, by Culf and
Vidick (2022).

Theorem 9 (Strong Monogamy-of-Entanglement). Define the following game, between a
challenger and a triple of adversaries A, B, C, and parametrized by a security parameter
λ. During the game, B and C are not allowed to communicate.

4.2. BB84 and Coset States 39

• Setup phase:

− The challenger samples an n-long coset state’s description (A, s, s′).

− The challenger sends |As,s′⟩ to A.

− The challenger provides membership oracle access OA,s,s′ to A, B, and C.

• Splitting phase:

− A prepares a bipartite quantum state |ψ∗⟩12.9

− A sends |ψ∗⟩1 to B and |ψ∗⟩2 to C.

• Challenge phase: The challenger sends A to both B and C.

Let v∗ denotes the output of B, and w∗ denotes the output of C. They win if and
only if v∗ ∈ A + s, w∗ ∈ A⊥ + s′, and the number of queries they make to the oracle is
polynomial in n.

The monogamy-of-entanglement property states that no triple of adversaries can win
this game with non-negligible probability. In other words, for any triple of adversaries A,
B, and C, let q denotes the number of queries A, B, and C make to the oracle OA,s,s′ .

Pr


q = poly(n)

∧
u∗ ∈ A+ s
∧

w∗ ∈ A⊥ + s′

:

u∗ ← BOA,s,s′ (|ψ∗⟩1 , A), w∗ ← COA,s,s′ (|ψ∗⟩2 , A)
|ψ∗⟩12 ← A

OA,s,s′ (|As,s′⟩)
s, s′ ←$ Fn2
A←$ {A ∈ Fn×n/2

2 : A is full-rank}

 ≤ negl(n)

We provide an illustration of this theorem in Figure 4.5.

Similarly to direct product hardness, Coladangelo, Liu, Liu, and Zhandry (2021)
proved that the oracle OA,s,s′ can be instantiated using a pair of iO-obfuscated programs
P̂A+s, P̂A⊥+s′ .

Theorem 10 ((Computational) Strong Monogamy-of-Entanglement). For any triple of
QPT adversaries A, B, and C,

Pr


u∗ ∈ A+ s
∧

w∗ ∈ A⊥ + s′
:

u∗ ← B(|ψ∗⟩1 , A, (P̂A+s, P̂A⊥+s′))
w∗ ← C(|ψ∗⟩2 , A, (P̂A+s, P̂A⊥+s′))
|ψ∗⟩12 ← A(|As,s′⟩ , (P̂A+s, P̂A⊥+s′))
s, s′ ←$ Fn2
A←$ {A ∈ Fn×n/2

2 : A is full-rank}

 ≤ negl(n)

Variants of direct product hardness and monogamy-of-entanglement. In the
rest of this thesis, we will see one variant of the direct product hardness property of coset
states, and one of the monogamy-of-entanglement property. Chevalier, Hermouet, and
Vu (2023) proposed a version of direct product hardness in which Alice can return two
vectors in the same coset (regular or dual), but they need to be different. Analogously to

9We stress that the quantum state prepared by the adversary can be a mixed state, contrarily to what
the notation could suggest. In the following of this thesis, for sake of simplicity, we abuse the notations
and write quantum states prepared by adversaries with pure state notations (e.g. |ψ∗⟩12).

40 Chapter 4. Unclonable Cryptography

Challenger
(A, s, s′)←$

AOA,s,s′
|As,s′⟩

BOA,s,s′
|ψ∗⟩1

A

v∗

COA,s,s′
|ψ∗⟩2

A

w∗

Winning Condition:
q = poly(n)

∧
v∗ ∈ A+ s

∧
w∗ ∈ A⊥ + s′

Figure 4.5: Strong monogamy-of-entanglement game for coset states. (A, s, s′) is a random n-long
coset state’s description, and q denotes the number of queries to the oracle OA,s,s′ . No adversary
wins this game with non-negligible probability in n.

the variant of monogamy-of-entanglement for BB84 states mentioned in the last section,
Chevalier, Hermouet, and Vu (2024b) proposed a version of monogamy-of-entanglement
where Bob and Charlie must return a vector in the same coset, but this coset is decided
during the challenge phase, after the splitting is done by Alice.

4.3 Quantum Money
We now have the tools to present the first class of unclonable primitives, the authenticity
class. We present this class through two primitives, namely quantum money, whose purpose
is to generate unclonable verifiable tokens; and tokenized-signature, a slightly different
primitive that provides quantum tokens which can be consumed to generate signatures. In
a first time, we present quantum money.

Quantum money can be seen as the digital equivalent of the physical coins and ban-
knotes, assuming these objects are unclonable. When considering a payment infrastructure
as a digital network, one can think of a network composed of multiple users, and a central,
trusted authority — the bank — which maintains a database that maps every user with
their balance. Now, when a user — the client — wants to transfer some money to another
one — the vendor — the client simply informs the bank of this transaction. The latter then
checks whether the client has enough money to do the transaction, and if yes, performs
the transaction — that is, updates the database accordingly. One downside of such a
network is that each transaction involves communications between the client, the vendor,
and the bank. The bank, in particular, is involved in all the transactions in the network
and has to make sure it can handle this huge amount of communications, in addition to
maintaining its giant database.

Another way of implementing such a payment infrastructure is through decentralized
currencies, like Bitcoin (Nakamoto (2008)). In these blockchain-based networks, users do

4.3. Quantum Money 41

not have to trust the bank anymore, but the counterpart is that they all have to maintain
the transactions’ history of all the network. In addition, every user has to verify all the
transactions themselves, implying a huge increase in the amount of communications in the
network.

All this communication burden is something that can easily be avoided using physical
money. Indeed, when Ava buys a croissant at the nearest bakery, she can simply pay with
coins or with a banknote, and the merchant accepts them if they “look real enough”. This
verification that the merchant performs can be abstracted as a local verification procedure,
in the sense that the merchant does not need to communicate with the bank. The verifier
has some public information that allow them to verify the authenticity of a given coin
or banknote. In this example, the verifier is the merchant and the public information is
simply their knowledge on the look of a coin or a banknote, but we can also think of a
machine to verify coins and banknotes in case of more expensive goods. The reason behind
the security of such payment methods is that the coins and banknotes are created with
some precise physical properties that make them hard to counterfeit. However, having
these security systems with decentralized digital payment systems seems to be an impossible
task. Indeed, in such an infrastructure, the coins and banknotes are represented with
classical data, and thus are in theory easy to copy.

This argument, on the other hand, does not hold if we use quantum states to represent
coins and banknotes. Indeed, as we saw earlier, according to the laws of quantum mechanics,
it is impossible to copy (or clone) an unknown quantum state. The idea of quantum
money is to take advantage of this property to build such “quantum coins” that would
be impossible to counterfeit. This primitive has first been introduced by Wiesner (1983)
under the of private quantum money — where the coins are verified by the bank — and
has led to numerous versions, including public ones — where the users can verify the coins
themselves.

In the following, we present private and public quantum money by defining them both
and giving some examples of constructions, as well as a history of important results in
the field. We also discuss difficulties of constructing public quantum money, through an
attack proposed by Brodutch, Nagaj, Sattath, and Unruh (2014).

4.3.1 Private Quantum Money
Private quantum money can be seen as a middle-step between a digital payment system
with a central bank, and a digital equivalent of the coins and banknotes with local
verification. A vendor and a client using such a system would proceed in the following
way. After the client sends a coin to the vendor, the vendor has to send the coin to the
bank, and wait for the latter to tell them whether it is valid or not. While this does not
seem extremely practical at first glance — indeed, we still need to go through the hassle
of asking the bank for verification — it gives good insight about how unclonability of
quantum states can be leveraged. Furthermore, we describe below how to simplify the
work of the bank, allowing it to get rid of the aforementioned ledger: the giant database
that maps every user to their balance.

Definitions

Definition 23 (Private Quantum Money Scheme). A private quantum money protocol is
made of a triple of algorithms ⟨KeyGen,Mint,Verify⟩ with the following properties:

42 Chapter 4. Unclonable Cryptography

Challenger
k← KeyGen(1λ)

(|¢⟩ , s)← Mint(k)
A

|¢⟩ , s |¢∗⟩12

s∗1, s
∗
2

Winning Condition:
Verify(k, |¢∗⟩1 , s∗

1) = 1
∧

Verify(k, |¢∗⟩2 , s∗
2) = 1

Figure 4.6: Unforgeability of a quantum money scheme. Unforgeability property states that no
adversary A must be able to win this game with non-negligible probability.

• k ← KeyGen(1λ). The key generation algorithm KeyGen takes as input a security
parameter 1λ and returns a classical key k.

• (|¢⟩ , s)← Mint(k). The minting algorithm Mint takes as input a key k and returns
a quantum state |¢⟩ as a “quantum coin”, and a corresponding classical identifier s.

• b← Verify(k, |¢⟩ , s). The verification algorithm Verify takes as input a key k and an
alleged (coin, identifier) pair (|¢⟩ , s) and returns a bit b, indicating whether the coin
is accepted (b = 1) or not (b = 0).

A private quantum money protocol must in addition satisfy the following properties.

Correctness. A coin that has been generated by the bank and that has not been
modified must be accepted by the verification protocol, except with negligible probability.
More precisely,

Pr
[
Verify(k, |¢⟩ , s) = 1 : (|¢⟩ , s)← Mint(k)

k← KeyGen(1λ)

]
≥ 1− negl(λ)

Unforgeability. No malicious user, given a valid (coin, identifier) pair, must be able to
produce two valid (coin, identifier) pairs. Formally, for any quantum adversary A,

Pr

 Verify(k, |¢∗1⟩ , s∗1) = 1
∧

Verify(k, |¢∗2⟩ , s∗2) = 1
:

(|¢∗12⟩ , s∗1, s∗2)← A(|¢⟩ , s)
(|¢⟩ , s)← Mint(k)
k← KeyGen(1λ)

 ≤ negl(λ)

We provide an illustration of this unforgeability property in Figure 4.6.

Wiesner’s Quantum Money

In this part, we provide a high level description of the quantum money protocol introduced
by Wiesner (1983). This protocol is the first quantum money protocol, and is a private one.
In this protocol, all parties can communicate through a classical authenticated channel and
a quantum channel. The key is a database, initially empty, mapping identifiers to BB84
state descriptions. In order to mint a coin, the bank first samples a random identifier,
and an n-long BB84 state description, and stores them in the database. The resulting
coin is the corresponding BB84 state. Verifying a (coin, identifier) pair simply consists in
retrieving the BB84 state description corresponding to the identifier in the database, then
measuring the coin in the description’s basis, and verifying that the outcome matches the
description’s value. We provide a formal description below.

4.3. Quantum Money 43

Construction 3: Wiesner’s Private Quantum Money Scheme
KeyGen(1λ) :

− Set n,m = poly(λ).

− Initialize and return an empty database db, mapping elements in
{0, 1}m to elements in {0, 1}n × {0, 1}n.

Mint(db) :

− Sample s←$ {0, 1}m.

− Sample an n-long BB84 state description, that is x, θ ←$ {0, 1}n such
that |θ| = n/2.

− Store (x, θ) at index s in db.

− Prepare |¢⟩ = |xθ⟩.

− Return (s, |¢⟩).

Verify(db, (s, |¢⟩)) :

− Retrieve (x, θ) at index s in db.

− Measure |¢⟩ in basis θ, let x′ denote the outcome.

− Return 1 if x′ = x, otherwise return 0.

This quantum money protocol was the first one being presented and, while being
information theoretically sound, it had some issues. Firstly, this is a private scheme
and thus, requires the vendor to send the coin to the bank, implying quantum costly
communications. Also, this scheme requires the bank to maintain a huge database in order
to store the BB84 description of all coins.

Solving the database issue. Bennett, Brassard, Breidbard, and Wiesner (1982) show
how avoid the use of such a huge database at the cost of losing the information theoretic
security, their scheme being only computationally secure. Roughly, they use a pseudoran-
dom function F 10— known only by the bank — and encode a banknote with identifier s
according to F (s). More precisely, let {Fk}k be a keyed family of pseudorandom functions.
The key generation procedure then simply returns a random key k. In order to mint a
new coin, the bank samples a random identifier s, then computes (x∥θ) := Fk(s) — that
is, x and θ are respectively the first and second halves of Fk(s). The quantum coin is
produced in the same way as in the original protocol, that is, preparing a BB84 state
whose description is (x, θ). Finally, the verifying procedure is also similar to the original
one, except that, instead of looking for the BB84 description of the coin in a database, the
bank computes it using Fk(s). We give an example of a coin in this protocol in Table 4.2.

Although it removes the huge database problem, this scheme does not solve the first
issue, namely the vendor still needs to ask the bank to verify banknotes. Note also that
revealing the pseudorandom function F to the clients would allow them to perform this

10We recall that the security of a pseudorandom function states that its outcome is computationally
indistinguishable from the one of a truly random function.

44 Chapter 4. Unclonable Cryptography

verification on their own but if one of them is malicious, they could use this information
to forge money. Solving this issue implies constructing a public quantum money scheme.

s 01011001
F (s) 00111011
x 0011
θ 1011
|¢⟩ |+0−−⟩

Table 4.2: Example of a coin |¢⟩ minted using the quantum money protocol described above.

Attacks on the Wiesner Scheme

At the time Wiesner introduced his money scheme, quantum cryptography was at its very
beginning, and no security proof was provided in the paper. Furthermore, there was no
formal definition for quantum money, and for the security properties it should feature.
Thus, it is not a surprise that several attacks on the Wiesner protocol have been presented
afterward, assuming different settings in the protocol. In the following, we present two
such attacks. What is crucial in these attacks is when and how the bank sends back a
quantum coin after the verification. More precisely, whether it sends back the coin when
the verification fails, and whether the coin sent back is the one sent for verification, or a
fresh new one.

When the bank always returns the verified state. The first attack, by Lutomirski
(2010), allows a malicious user to completely learn the classical description of a quantum
coin, and therefore to produce as many as they want, assuming that the bank always
returns the quantum coin to the vendor after the verification procedure is complete.
Crucially, it must return it even if the coin is not accepted. The malicious user Alice
proceeds in the following way. Given a quantum coin |¢⟩ = ⊗n

i=1 |x
θi
i ⟩, she applies an

X gate to the first qubit of |¢⟩, and then sends the resulting state |¢∗⟩ to the bank for
verification. If the qubit was |0⟩ or |1⟩, then, after the X gate is applied, the value of the
qubit is flipped, hence it is rejected by the verification procedure with probability 1. If, on
the other hand, the qubit was |+⟩ or |−⟩, the X gate has no effect on it (up to a change in
the phase), hence it is accepted by the verification algorithm with probability 1. Thus,
depending on the answer of the bank regarding the validity of |¢∗⟩, Alice learns in which
basis the first qubit was prepared. Furthermore, as |¢∗⟩ is either accepted or rejected with
probability 1, |¢∗⟩ is not modified by the verification procedure, and she receives the same
state |¢∗⟩ back from the bank. Then, she simply undoes the X gate operation, and repeats
the same procedure with the other qubits, one by one, until she completely learns the
basis θ. Finally, once it is done, she measures |¢⟩ in basis θ to learn the value of the coin,
allowing her to produce as many copies of it as she wants.

When the bank returns the verified state only on acceptance. The second attack
was given by Brodutch, Nagaj, Sattath, and Unruh (2014). Similarly, it allows an adversary
to completely learn the description of a quantum coin, but here, we do not even need to
assume that the bank returns the state when the procedure rejects it, only that it returns
the state if the procedure accepts. The attack is based on the bomb testing procedure of

4.3. Quantum Money 45

Kwiat, Weinfurter, Herzog, Zeilinger, and Kasevich (1995) and exploits the fact that the
verification procedure in the Wiesner quantum money scheme boils down to applying the
projective measurement {|xθi

i ⟩⟨xθi
i |, I− |xθi

i ⟩⟨xθi
i |} on each qubit |¢⟩i of the coin. The attack

is the following. Let ε be a small angle, and N := π/(2ε). A malicious user Alice who
wants to learn the description of |¢⟩i — that is (xi, θi) — first creates a “probe” quantum
state |ψ⟩, initially |0⟩. Then, she applies a Y-rotation of angle ε (that is the gate RY (ε)) to
the probe, performs a CNOT to |¢⟩i, controlled by |ψ⟩, and sends the resulting quantum
coin to the bank for validation. She repeats these steps N times, and finally measures the
probe state in the rectilinear basis.

We distinguish two cases, depending on whether the basis θi is the rectilinear or
diagonal one. The simplest case is when θi is the diagonal basis, meaning that |¢⟩i is
either |+⟩ or |−⟩. In this case, applying the CNOT results in (α |0⟩+ β |1⟩) ⊗ |+⟩ or
(α |0⟩ − β |1⟩)⊗ |−⟩ — where α and β are respectively cos(ε) and sin(ε). In both cases,
the probe and the coin are not entangled, and the quantum coin is not modified, hence
the bank accepts the coin with probability 1, and the probe is left unchanged by the
verification procedure. Thus, repeating the steps above increases little by little β, while
decreasing α. After N repetitions, the probe ends up in state |1⟩.

In the other case, when θi is the rectilinear basis, |¢⟩i is |xi⟩. Then, applying the
CNOT results in the state α |0⟩ |xi⟩+ β |1⟩ |x̄i⟩ — where again, α and β are respectively
cos(ε) and sin(ε). In this case, crucially, the probe and the coin are entangled, and the
verification procedure accepts with probability α2. If the procedure accepts, because of the
entanglement, the two registers collapse to |0⟩ |xi⟩, which is exactly the initial state before
the rotation. Thus, repeating these steps N times results, conditioned on the verification
procedure accepting at each repetition, in this same state |0⟩ |xi⟩. Thus, after the N
repetitions, when Alice measures the probe, the outcome tells her whether the coin is
encoded in the rectilinear or the diagonal basis. In other words, she learns θi, and she can
then measure |¢⟩i in the corresponding basis to learn xi.

Of course, this attack relies on the fact that the verification procedure accepts N times.
Loosely speaking, the analysis provided in Brodutch, Nagaj, Sattath, and Unruh (2014)
shows that, for this to happen with non-negligible probability in n (where n in the number
of qubits of the coin), N only needs to be polynomial in n.

4.3.2 Public Quantum Money
Public quantum money is the closest digital equivalent to a system with physical coins
that a central bank only can produce, but that everyone can verify locally. Such a scheme
features the same triple of algorithms — key generation, minting, and verifying procedure

— as its private counterpart, with as a main difference two distinct keys to respectively
mint, and verify coins. In this public version, it is also important to mention that the
verification procedure must not destroy the state (or at least returns a valid coin). Indeed,
consider a system where the coin is destroyed after verification, a vendor who wants to
verify a coin given by a client would destroy it in the process, rendering it unusable. The
reason it was not necessary in the private version is that the bank makes the verification
and mint coins. So, even if the coin was destroyed, the bank would still be able to produce
a new (coin, identifier) pair and send it back the whoever asked for the verification.

Public quantum money is arguably one of the most interesting unclonable primitive,
as it has an immediate use-case. However, what perhaps makes it even more interesting is
that we still do not now any provably secure public quantum money scheme (relying on

46 Chapter 4. Unclonable Cryptography

|0⟩ |1⟩

|−⟩

|+⟩

ε

next step

|0⟩ |1⟩

|−⟩

|+⟩

ε

next step

. . .

next step

|0⟩ |1⟩

|−⟩

|+⟩

ε

|0⟩ |1⟩

|−⟩

|+⟩

ε

next step

|0⟩ |1⟩

|−⟩

|+⟩

ε

next step

. . .

next step

|0⟩ |1⟩

|−⟩

|+⟩

π

Figure 4.7: Probe state during the bomb testing attack on Wiesner protocol. Each circle represents
the XZ plan of the Bloch sphere, and the thick arrow represents the probe state. The top row
represents the N repetitions on a qubit encoded in the rectilinear basis: the angle of the probe
state remains the same at each repetition. The bottom row represents the N repetitions on a
qubit encoded in the diagonal basis: the angle of the probe state increases after each repetition,
until it reaches π/2 (or π in the figure, as the angle are doubled on the Bloch sphere).

common assumptions) as far as the thesis is written.
In the following, we start by presenting a short history of attempts to construct this

primitive, then we formally define it, and we finally present a candidate construction,
based on oracles, by Aaronson and Christiano (2012), through the so-called mini-schemes
template.

History

Several attempts have been made in order to construct such a public scheme since the
definition of quantum money. Although significant progress has been done these last years,
we still do not have a candidate whose security is provably based on standard assumptions.
As a consequence, public quantum money is still considered as an open problem. We make
some of these candidates in the following, and discuss where they failed or what they lack
to be considered as a completely satisfying scheme.

In the very beginning of the quantum cryptography era, Bennett, Brassard, Breidbard,
and Wiesner (1982) proposed a candidate scheme whose security relies on the hardness
of factoring Blum integers. However, as it later turned out that this task is actually
easy for a quantum computer (Shor (1994)), the security of this scheme does not hold
anymore. Almost thirty years later, several new candidates emerged: Farhi, Gosset,
Hassidim, Lutomirski, and Shor (2012), Kane (2018) and Kane, Sharif, and Silverberg
(2022) proposed candidates based on knot theory and quaternion algebras, but the problems
based on these fields have not been extensively studied by cryptographers, hence their

4.3. Quantum Money 47

hardness is not considered as standard assumptions. Two works by Aaronson (2009), and
Aaronson and Christiano (2012) defined a secure public quantum money scheme based
on a quantum oracle for the former, and on a classical one for the latter. However, it is
unclear how to build such oracles; in fact, both papers propose a construction that was
subsequently broken (Lutomirski, Aaronson, Farhi, Gosset, Kelner, Hassidim, and Shor
(2010), Conde Pena, Duran Diaz, Faugere, Hernandez Encinas, and Perret (2019)). Zhandry
(2021) proposed a scheme from quantum lightning11, a powerful primitive whose candidate
construction given in the same paper was later broken (Roberts (2021)). In the same
paper, Zhandry also described a public quantum money scheme based on indistinguishable
obfuscation (iO). Yet, while iO is proven to exist under standard assumptions if we only
consider classical adversaries, it is unclear whether this primitive exists in a post-quantum
world. More recently, Liu, Montgomery, and Zhandry (2023b) proposed a candidate public
quantum money construction based on random lattices, which was later broken by Liu,
Montgomery, and Zhandry (2023a). Finally, Zhandry (2023) presented a new construction
for quantum lightning — hence yielding directly a quantum money protocol — on a new
(and thus non-standard) assumption on group actions and isogenies.

Definitions

We give in this subsection definition of a public quantum money scheme. Although this
definition is merely an adaptation of the one for a private scheme, we present it formally
for the sake of completeness.

Definition 24 (Public Quantum Money Scheme). A public quantum money protocol is
made of a triple of algorithms ⟨KeyGen,Mint,Verify⟩ with the following properties:

• (sk, vk) ← KeyGen(1λ). The key generation algorithm KeyGen takes as input a
security parameter 1λ and returns a pair of keys: a private key sk, and a verification
key vk.

• (|¢⟩ , s)← Mint(sk). The minting algorithm Mint takes as input a secret key sk and
returns a quantum state |¢⟩ as a “quantum coin”, and a corresponding classical
identifier s.

• b← Verify(vk, |¢⟩ , s). The verification algorithm Verify takes as input a verification
key vk, and an alleged (coin, identifier) pair (|¢⟩ , s) and returns a bit b, indicating
whether the coin is accepted (b = 1) or not (b = 0).

A public quantum money protocol must in addition satisfy the following properties.

Correctness. A coin that has been generated by the bank and that has not been
modified must be accepted by the verification protocol, except with negligible probability.
More precisely,

Pr
[
Verify(vk, |¢⟩ , s) = 1 : (|¢⟩ , s)← Mint(sk)

(sk, vk)← KeyGen(1λ)

]
≥ 1− negl(λ)

11We give a description on quantum lightning in Section 4.3.3.

48 Chapter 4. Unclonable Cryptography

Unforgeability. No malicious (computationally bounded) user, given the verification
key and a valid (coin, identifier) pair, must be able to produce two valid (coin, identifier)
pairs. Formally, for any QPT adversary A,

Pr

 Verify(vk, |¢∗1⟩ , s∗1) = 1
∧

Verify(vk, |¢∗2⟩ , s∗2) = 1
:

(|¢∗12⟩ , s∗1, s∗2)← A(vk, |¢⟩ , s)
(|¢⟩ , s)← Mint(sk)
(sk, vk)← KeyGen(1λ)

 ≤ negl(λ)

Importantly, the key generation protocol, in such a public scheme returns a verification
key in addition to the private key. This verification key can be distributed publicly, as the
unforgeability property ensures that the coins remain unforgeable, even for an adversary
possessing the verification key.

Aaronson and Christiano Mini-Schemes

Aaronson and Christiano (2012) introduced the notion of quantum money mini-schemes.
Loosely speaking, a mini-scheme can be seen as an unkeyed quantum money scheme, only
minting and verifying quantum coins, and can be upgraded to a full quantum money
scheme using digital signatures. The rest of this section is dedicated to presenting these
mini-schemes, together with an informal description of the mini-scheme Aaronson and
Christiano proposed in the same paper.

Definition 25 (Quantum Money Mini-Scheme). A quantum money mini-scheme is
composed of a pair of algorithms ⟨Mint,Verify⟩ with the following properties:

• (|¢⟩ , s)← Mint(1λ). The coin generation algorithm Mint takes as input a security
parameter (written in unary) and returns a quantum coin |¢⟩ and its classical identifier
s.

• b← Verify(|¢⟩ , s). The verification algorithm Verify takes as input an alleged (coin,
identifier) pair (|¢⟩ , s) and returns a bit b, indicating whether the coin is accepted
(b = 1) or rejected (b = 0).

Correctness and unforgeability. Correctness for a mini-scheme is defined similarly to
its full-scheme counterpart. That is, such a scheme has correctness if a (coin, identifier)
pair, generated by the Mint protocol, is accepted with probability close to 1. Furthermore,
a mini-scheme has unforgeability if no malicious user, given a valid (coin, identifier) pair,
can produce two (possibly entangled) quantum coins, valid for the given identifier. More
formally, for any quantum adversary A,

Pr

 Verify(|¢∗1⟩) = 1
∧

Verify(|¢∗2⟩) = 1
: |¢

∗
12⟩ ← A(|¢⟩ , s)

(|¢⟩ , s)← Mint(1λ)

 ≤ negl(λ)

From mini-scheme to full-scheme. Aaronson and Christiano (2012) show how to
upgrade a quantum money mini-scheme to a quantum money full-scheme, using a digital
signature scheme. The idea is to use the public and private keys of the signature scheme
as keys in the full-scheme. Then, a (coin, identifier) pair is obtained by minting one
coin through the mini-scheme, and signing the identifier. Verifying such a pair simply
consists in verifying the signature, and then the quantum coin itself, using the verification

4.3. Quantum Money 49

procedures of the digital signature scheme and the mini-scheme respectively. We give a
more formal description below.

Construction 4: Quantum Money Scheme From Mini-Scheme
Let MS.⟨Mint,Verify⟩ be a quantum money mini-scheme, and DS.⟨KeyGen, Sign,Verify⟩
be a digital signature scheme.

KeyGen(1λ) :

− Return (sk, vk)← DS.KeyGen(1λ).

Mint(sk) :

− Compute (|¢⟩ , s)← MS.Mint(1λ).

− Compute sig ← DS.Sign(sk, s).

− Return the pair (|¢⟩ , (s, sig)), where |¢⟩ is the quantum coin, and (s, sig)
the identifier.

Verify(pk, (|¢⟩ , s, sig)) :

− Compute b1 ← MS.Verify(|¢⟩ , s).

− Compute b2 ← DS.Verify(vk, s, sig).

− Return b1 ∧ b2.

We give some intuition on the security of this transformation. Consider an adversary
that, given one (coin, identifier) pair (|¢⟩ , (s, sig)), produces two pairs (|¢∗1⟩ , (s1, sig1))
and (|¢∗2⟩ , (s2, sig2)). Note first that the unforgeability of the underlying signature scheme
enforces s1 = s2 = s. Then, invoking the mini-scheme unforgeability tells us that |¢∗1⟩ and
|¢∗2⟩ cannot both be valid coins for s, proving the unforgeability of the resulting quantum
money scheme.

A mini-scheme based on subspace states. Aaronson and Christiano (2012) provided
a construction of a quantum money mini-scheme, based on subspace states, and using
classical membership oracles. Recall that a subspace state |A⟩ — where A ⊂ Fn2 is a
subspace of dimension n/2 — is the uniform superposition of all vectors in A, that is
1/
√
|A|∑a∈A |a⟩. Recall also that applying a Hadamard gate H⊗n to |A⟩ yields |A⊥⟩, where

A⊥ := {x ∈ Fn2 : x · a = 0 ∀a ∈ A} is the dual subspace of A.
With these properties in mind, we are now ready to discuss the scheme informally.

This scheme first need a sort of random oracle, which, when run on a bitstring, returns an
identifier s, and the description of a subspace As of dimension n/2. Minting a coin then
consists in running this oracle on a random bitstring to get a random (s, As), preparing the
corresponding subspace state |As⟩, and returning |As⟩ as the coin, and s as its identifier.

In order to verify a coin, we need three additional oracles. A first one that maps an
identifier s to its corresponding subspace As; a second one that checks membership in the
subspace As, that is, given an identifier s and a vector x, returns whether x ∈ As or not;
and a last one that checks membership in the dual subspace A⊥s similarly.12 Verifying a

12Note that we simplified the oracles for purpose of conciseness. We refer the curious reader to the

50 Chapter 4. Unclonable Cryptography

(coin, identifier) pair (s, |ψ⟩) then consists in

• running the first membership oracle in superposition over |s⟩1 ⊗ |ψ⟩2;

• applying a Hadamard gate H⊗n on the second register;

• running the second membership oracle (for the dual subspace) in superposition over
the resulting state;

• applying a Hadamard gate again on the second register.

Note also that, when |ψ⟩ = |As⟩, applying both membership oracles do not change the
state, and the quantum coin in the end of the verification procedure is |As⟩.

4.3.3 Quantum Lightning
Quantum money, even in the public settings, always require users to trust a central
authority, the bank. In the private settings, the bank plays a central role, as it is the
entity that both creates, and verifies the money. Its role is less important, in the public
settings, as it only creates the new coins and verification is done by the users themselves,
but it is still the only entity that can perform such a task. Quantum lightning, proposed
by Zhandry (2021), can be seen as a strengthening of quantum money, that removes the
need for such a central bank, by allowing every user to mint their own coins. We can
imagine that, in a network using a quantum lightning scheme, the users are not allowed
to mint as many new coins as they want, but rather that, for example, there exists some
other mechanism that ensures that users can only mint valid new coins according to a
certain policy.

Of course, with such a power given to the users, it is necessary to modify the previous
notions of unforgeability. Indeed, any malicious user can easily produce two valid (coin,
identifier) pairs by simply running the minting procedure twice. The new security notion
asked for a quantum lightning scheme is then that no malicious party can produce two
quantum coins, valid for the same identifier. Enforcing this security is not an easy task,
as, intuitively, it requires a way to enforce the user who wants to mint a coin to prepare
a large superposition of (coin, identifier) pairs, and to measure it to yield a valid pair.
This security notion, however, rules out a natural attack on what we can call a quantum
lightning network. Imagine, as said above, that users have a way to decide whether a user,
has the right to produce a new coin. Imagine that a user Alice has the right to produce a
new coin. What would typically be expected from Alice, is minting a new (coin, identifier)
pair through the public minting algorithm, and then publish the identifier to the network,
so that everyone knows that this identifier points to a valid coin. If Alice is malicious,
however, she could try to come up with two valid coins for some arbitrary identifier, and
this is exactly what the quantum lightning security property rules out.

In the following, we give a formal definition of quantum lightning, discuss the connec-
tion with quantum money and other applications, and finally provide a history of this
functionality.

Definition 26 (Quantum Lightning). A quantum lightning scheme is composed of three
algorithms ⟨KeyGen,Mint,Verify⟩ with the following properties:

paper of Aaronson and Christiano (2012) for a more complete description.

4.3. Quantum Money 51

Challenger
k← KeyGen(1λ)

A
k |¢∗⟩12

s∗

Winning Condition:
Verify(k, |¢∗

1⟩ , s∗) = 1
∧

Verify(k, |¢∗
2⟩ , s∗) = 1

Figure 4.8: Quantum lightning security property. This property states that no efficient adversary
must be able to win this game with non-negligible probability.

• k ← KeyGen(1λ). The key generation algorithm KeyGen takes as input a security
parameter, and returns a classical key k.

• (|¢⟩ , s)← Mint(k). The minting algorithm Mint takes as input a key k and returns
a quantum state |¢⟩ as a quantum coin, and a corresponding identifier s.

• b ← Verify(k, |¢⟩). The verification algorithm Verify takes as input a key k, and a
(coin, identifier) pair (¢, s) and returns a bit b, indicating whether the coin is accepted
(b = 1) or not (b = 0).

A quantum lightning scheme must in addition satisfy the same correctness property
as a quantum money scheme. That is, a (coin, identifier) pair must be accepted by the
verification algorithm with probability close to 1. Furthermore, such a scheme must feature
the security property defined below.

Security. No malicious (computationally efficient) adversary, must be able to generate
two quantum coins, valid for the same identifier. More formally, for any QPT adversary A,

Pr

 Verify(k, |¢∗1⟩ , s∗) = 1
∧

Verify(k, |¢∗2⟩ , s∗) = 1
: (|¢∗12⟩ , s∗)← A(k)

k← KeyGen(1λ)

 ≤ negl(λ)

We provide an illustration of this security property in Figure 4.8.
This definition of quantum lightning, is the one presented in Zhandry (2021). Note

that Zhandry (2023) gives a slightly different definition, in which the scheme is defined
as a quantum money mini-scheme (Section 4.3.2) — that is a pair of unkeyed algorithms
⟨Mint,Verify⟩— with similar correctness and security properties as the ones above, adapted
to mini-schemes. The major difference in this mini-scheme-based definition is that it is
impossible to achieve security against non-uniform adversaries. Indeed, one can think of a
family of non-uniform adversaries {Aλ, (|¢λ⟩ |¢λ⟩ , sλ)}λ∈N, such that (¢λ, sλ) is generated
through Mint(1λ). An adversary defined this way would break the security property, simply
by returning the advice.

Applications of Quantum Lightning

Quantum lightning is a powerful functionality that can be used to build numerous crypto-
graphic primitives such as public quantum money, verifiable randomness and decentralized
currency, as mentioned by Zhandry (2021).

52 Chapter 4. Unclonable Cryptography

Public quantum money. We can construct a public quantum money scheme given a
quantum lightning scheme and a public signature scheme similarly to the transformation
“quantum money mini-scheme to full-scheme” seen in Section 4.3.2. More precisely, the
keys are generated with the signature scheme generation protocol. The minting is then
done by generating a (coin, identifier) pair with the quantum lightning scheme, and then
returning this pair, as well as a signature of the identifier. And, finally, the verification
consists in verifying that both the (coin, identifier) and the signature are valid.

Verifiable randomness. In order to produce verifiable randomness, one can generate a
(coin, identifier) pair and sends the identifier as the random string together with the coin
as the proof. Any user who wants to verify that the string has been genuinely generated
(using a random process) just has to verify that the (coin, identifier) pair is valid.

Decentralized currency. Finally, Zhandry proposed an idea for a decentralized currency
using quantum lightning. A key k ← KeyGen(1λ) is publicly known by all users and, in
order to mint money, a user must provide a coin whose identifier starts with a certain
number of zeroes (fixed in advance). The only way for a user to generate such a coin is to
repeatedly generate (coin, identifier) pairs until the identifier starts with enough zeroes.
Then, users can verify that a (coin, identifier) pair was genuinely minted by first verifying
that the identifier starts with enough zeroes and then running the verification procedure
on the pair. This minting method reminds the proof of work of Bitcoin, ensuring that
coins are hard enough to produce. Such a decentralized currency protocol, while being
interesting in theory, has several issues that prevents it to be used as it is. However,
Coladangelo and Sattath (2020) expanded this idea by proposing a hybrid protocol for
a blockchain-based decentralized currency. Roughly, they use a classical blockchain and
combine it with quantum lightning. Users can perform transactions classically — as they
would do with the classical blockchain — but they can also trade some amount of money
for a quantum “banknote” that is worth this amount of money. This banknote is actually
composed of a quantum coin and its identifier, and any user who creates the banknote
publishes (classically) in the blockchain the identifier and the amount of coins she wants to
attach to the banknote. She is now able to perform transactions by sending this banknote
to any other user, say Ben, who can verify the banknote validity by searching its identifier
on the blockchain (this gives him the amount of money associated to the banknote) and by
using the quantum lightning verification procedure to ensure that the (coin, identifier) pair
is valid. The major advantage with this protocol is that this new way of doing transactions
allows instantaneous verification, while users have to wait some time before a transaction
is accepted when using standard blockchain’s transactions.

Quantum Lightning Constructions

Quantum lightning is a very powerful cryptographic primitive. Unfortunately however,
we still do not know how to construct a protocol for it, based on standard assumptions.
Zhandry (2021) proposed a construction based on an assumption on the hardness of a
matrix problem, but this assumption was later proven wrong by Roberts (2021). While
invalidating Zhandry’s construction, Roberts (2021) does not prove that quantum lightning
is impossible, so we can still hope to find a protocol for this functionality. In fact, Zhandry
(2023) proposed a new template for constructing quantum lightning, and gives a candidate
scheme based on a non-standard assumption on isogenies.

4.3. Quantum Money 53

4.3.4 Tokenized Signatures
In this section, we discuss a primitive that shares similarities with quantum money, in the
sense that the property the quantum states of this primitive have is related to verification.

Consider a network of users, where some user Ava has some authority. As she leaves
for some time, she decides to give the ability to her friend Alice to sign arbitrary messages
on her behalf. However, her confidence in Alice is limited, so she wants to let her sign
up to, say, three messages. A tokenized signature scheme exactly fits this purpose, by
allowing Ava to generate and share one-time tokens, that can be used to sign any message,
and then self-destroy (here, she would give three tokens to Alice). This notion was first
introduced by Ben-David and Sattath (2023), and they constructed a tokenized signature
scheme based on oracles.

In this section, we define tokenized signature schemes, and give an example of such a
scheme.

Definitions

We start by giving the definition of a tokenized signature scheme, and the properties that
such a scheme can (or must) feature.

Definition 27 (Tokenized Signature Scheme). A tokenized signature scheme is a tuple of
algorithms ⟨KeyGen,TokenGen, Sign,Verify⟩ with the following properties:

• (sk, vk) ← KeyGen(1λ). On input a security parameter 1λ, the key generation
algorithm outputs a secret key sk and a verification key vk.

• | ⟩ ← TokenGen(sk). On input a secret key sk, the quantum token generation
algorithm outputs a quantum signing token | ⟩.

• sig ← Sign(| ⟩ ,m). On input a signing token | ⟩ and a message m ∈ M to be
signed, the signing algorithm outputs a classical signature sig of m.

• b← Verify(vk,m, sig). On input a verification key vk, a message m, and a signature
sig, the verification algorithm returns a bit b, indicating whether the verification
accepts (b = 0) or rejects (b = 1) the signature.

We present four properties that a tokenized signature scheme can have. In the following,
we consider that such a scheme must feature at least the two first properties — namely
correctness and weak unforgeability. Whenever a tokenized signature scheme has one of
the two other properties — namely strong unforgeability and unclonable unforgeability —
we explicitly mention it.

Correctness. A tokenized signature scheme has correctness if a signature of any message
m produced by a valid token is accepted with overwhelming probability. More formally,
for all m ∈ {0, 1},

Pr

Verify(vk,m, sig) = 1 :
sig ← Sign(| ⟩ ,m)
| ⟩ ← TokenGen(sk)
(sk, vk)← KeyGen(1λ)

 ≥ 1− negl(λ)

54 Chapter 4. Unclonable Cryptography

Challenger
(sk, vk)← KeyGen(1λ)

| ⟩ ← TokenGen(sk)
A

| ⟩ , vk m∗1, s
∗
1

m∗2, s
∗
2

Winning Condition:
Verify(vk,m∗

1, sig
∗
1) = 1

∧
Verify(vk,m∗

2, sig
∗
2) = 1

∧
(m1, sig1) ̸= (m2, sig2)

Figure 4.9: Strong unforgeability property of a tokenized signature scheme. This property states
that no efficient adversary must be able to win this game with non-negligible probability.

Weak unforgeability. A tokenized signature has weak unforgeability if no computation-
ally efficient malicious user, given one token, can produce two different messages, together
with a valid signature for each message. More precisely, for all QPT adversary A,

Pr


Verify(vk,m∗1, sig∗1) = 1

∧
Verify(vk,m∗2, sig∗2) = 1

∧
m1 ̸= m2

:
(m∗1, sig∗1,m∗2, sig∗2)← A(vk, | ⟩)
| ⟩ ← TokenGen(sk)
(sk, vk)← KeyGen(1λ)

 ≤ negl(λ)

Note that, as we consider public verification, the adversary is also given the verification
key.

Strong unforgeability. Chevalier, Hermouet, and Vu (2023) defined a stronger un-
forgeability property, namely strong unforgeability. One can see the weak definition as the
equivalent of the existential unforgeability for classical digital signature schemes, adapted
to our settings. Then strong unforgeability is defined as the equivalent of strong existential
unforgeability of digital signatures. A tokenized signature has strong unforgeability if no
computationally efficient adversary can produce two different (message, signature) pairs.
Note that, contrary to the weak definition, the messages here can be equal, we just ask
the signatures to be different. More precisely, for all QPT adversary A,

Pr


Verify(vk,m∗1, sig∗1) = 1

∧
Verify(vk,m∗2, sig∗2) = 1

∧
(m1, sig1) ̸= (m2, sig2)

:
(m∗1, sig∗1,m∗2, sig∗2)← A(vk, | ⟩)
| ⟩ ← TokenGen(sk)
(sk, vk)← KeyGen(1λ)

 ≤ negl(λ)

We provide an illustration of this strong unforgeability property in Figure 4.9.
Remark 1. Chevalier, Hermouet, and Vu (2024b) proposed a new security property for
tokenized signatures, that they named unclonable unforgeability. To understand this last
property, consider the following scenario. Alice owns a signing token and wants to send
it to both Bob and Charlie, two non-communicating users, such that both of them can
sign an arbitrary message. Crucially, they need to be able to choose this message after the
token is split. We elaborate on this property in Chapter 5.

Construction

We present a simple construction, based on BB84 states, which only features private
verification. This scheme was presented by Behera, Sattath, and Shinar (2021), based on

4.3. Quantum Money 55

a work of Pastawski, Yao, Jiang, Lukin, and Cirac (2012). In the example we gave at the
beginning of the section, it means that the user who sign messages is the only one who
can verify the validity of the signatures produced with the tokens, otherwise the scheme is
insecure. Note that Coladangelo, Liu, Liu, and Zhandry (2021) constructed a tokenized
signature scheme, with public verification, and satisfying weak unforgeability property. As
one of the contributions of this thesis is to prove that this scheme satisfies other properties,
we present it in details in Chapter 5.

A simple scheme based on BB84 states. This scheme is for single-bit messages. The
secret (and verification) key is composed of two random n-long bitstrings, representing
respectively the value x and the basis θ of a BB84 state. A token is then the corresponding
BB84 state, and signing a bit b simply consists in measuring the state in either the
rectilinear, or diagonal basis. Finally, let I be the set of indices at which θi = 0. A
valid signature for 0 is a bitstring sig such that sig|I = x|I and a valid one for 1 is such
that sig|Ī = x|Ī . In other terms, sig must match x at indices on which θ = 0 for a valid
signature of 0, and the same must hold at the indices on which θ = 1 for a valid signature
of 1. We provide a more formal description of this scheme below.

The correctness of this scheme is immediate, and the weak unforgeability property is
implied by the monogamy-of-entanglement property of BB84 states (Theorem 5). Indeed,
consider an adversary Alice who produces two valid pairs (message, signature) (m1, sig1)
and (m2, sig2), where m1 ̸= m2, with probability p. We can assume without loss of
generality that m1 = 0 and m2 = 1, meaning that s1 = x|I and s2 = x|Ī . Then, we
construct a triple of adversaries Alex, Billy, and Clover, for the monogamy-of-entanglement
game for BB84 states. Alex, given as input a BB84 state |xθ⟩, runs Alice on it to get
(m1, sig1) and (m2, sig2). She then sends s1 and s2 to Billy and Clover, and the latter
simply return s1 and s2 respectively, and win the game with the same probability p.

Construction 5: A Single-Bit Tokenized Signature Scheme
Set n = poly(λ).

KeyGen(1λ) :

− Sample n-long BB84 state’s description: x ←$ {0, 1}n and θ ←$
{0, 1}n such that |θ| = n/2.

− Return (x, θ).13

TokenGen(sk) :

− Parse sk as (x, θ).

− Return |xθ⟩.

Sign(m, | ⟩) :

− Apply H⊗n to ρ only if m = 1; otherwise, leave the state unchanged.

− Measure the resulting state in the computational basis. Let sig be the
outcome.

− Return sig.

56 Chapter 4. Unclonable Cryptography

Verify(sk,m, sig) :

− Parse sk as (x, θ).

− Set I := {i ∈ {1, . . . , n} | θi = 0}.

− If m = 0: return 1 if sig|I = x|I ; otherwise return 0.

− If m = 1: return 1 if sig|Ī = x|Ī ; otherwise return 0.

4.4 Unclonable Encryption
We now present the second class of unclonable primitives. This class is made of primitives
that hold information, in an unclonable way. As a warm-up example, consider a (private)
encryption scheme — composed of a key generation, encryption and decryption procedures

— with the usual IND-CPA security. Now, say that you want the ciphertexts to be
unclonable, meaning they are now quantum states, and cannot be split into two states
that both hold information on the plaintext. This is exactly unclonable encryption, first
defined by Broadbent and Lord (2020), and exists in private and public settings.

In both settings, the correctness and semantic security must hold, as in their classical
counterpart. Furthermore, they must achieve the following unclonability property. Consider
a malicious user Alice, who splits the ciphertext of a random message into two states. It
must be impossible for two other (non-communicating) users collaborating with Alice,
Bob and Charlie, to simultaneously guess which plaintext has been encrypted, even given
the decryption key. Note that, provided that the scheme is secure, Alice cannot guess the
plaintext. However, she would be able to do it easily if she is provided what is given to
Bob and Charlie after the split, namely the decryption key.

As mentioned above, this primitive has first been defined in the private settings by
Broadbent and Lord (2020).14 In this paper, Broadbent and Lord also gave a construction
of a one-time private unclonable encryption scheme — meaning that the key can only be
used to encrypt one message — based on BB84 states. Ananth and Kaleoglu (2021) later
extended the definition to the public settings, presenting in the same paper a generic way
to transformation to construct both private and public unclonable encryption schemes
from a one-time one. However, it is worth pointing out that none of the constructions
above achieve the stronger unclonable-indistinguishability security property (Broadbent
and Lord (2020)). This property can be seen as a combination of the semantic security
for classical encryption schemes, and the unclonability property described above. More
precisely, the difference with the unclonable property is that the ciphertext given to Alice
is the encryption of one of two messages, chosen by Alice beforehand. The unclonable-
indistinguishability property then states that Bob and Charlie must not be able to both
guess which message has been encrypted with probability greater than 1/2. Unclonable-
indistinguishability is considerably more difficult to achieve than the simple unclonability,
as, while constructions with this property has been proposed in the QROM (Ananth,
Kaleoglu, Li, Liu, and Zhandry (2022) and Ananth, Kaleoglu, and Liu (2023))15, and

13Remark that, as the verification key here is actually the secret key, we simply write sk for both keys,
hence the KeyGen algorithm returns only sk.

14In an earlier work, Gottesman (2002) also defines unclonable encryption, in a slightly different way.
Throughout this thesis, we use the definition of Broadbent and Lord (2020).

4.4. Unclonable Encryption 57

under unproven conjectures (Ananth and Behera (2024) and Chevalier, Hermouet, and Vu
(2024b)), achieving a construction in the plain model (that is, without oracle) remains an
open problem at the time of writing this thesis.

In the rest of this section, we formally define private and public unclonable encryption
schemes, and present the one-time constructions proposed by Broadbent and Lord (2020)
and Ananth, Kaleoglu, and Liu (2023), as well as the generic transformation to turn such
a one-time scheme into a private key and public key one.

4.4.1 Private Unclonable Encryption
In the following, we define private key and public key unclonable encryption, as well as
their correctness and security properties.
Definition 28 (Private Unclonable Encryption). A private unclonable encryption scheme
for a message space M16 is composed of three algorithms (KeyGen,Enc,Dec) defined in
the following way:

• k ← KeyGen(1λ). The key generation algorithm KeyGen takes as input a security
parameter, and returns a classical key k.

• | ⟩ ← Enc(k,m). The encryption algorithm Enc takes as input a key k and a classical
message m ∈M and returns a quantum ciphertext | ⟩.

• m ← Dec(k, | ⟩). The decryption algorithm Dec takes as input a key k and a
quantum ciphertext | ⟩ and returns a classical message m.

A private unclonable encryption scheme must in addition satisfy the following properties.

Correctness. The encryption of a message must always decrypt to this message. More
precisely, for any message m ∈M,

Pr
[
Dec(k, | ⟩) = m : | ⟩ ← Enc(k,m)

k← KeyGen(1λ)

]
≥ 1− negl(λ)

Indistinguishability. We distinguish one-time indistinguishability from many-time
indistinguishability. For a private unclonable encryption scheme to have one-time indistin-
guishability, the encryption of two messages must be computationally indistinguishable.
More formally, for all m,m′ ∈M,

{Enc(k,m) : k← KeyGen(1λ)}
≈c

{Enc(k,m′) : k← KeyGen(1λ)}
Many-time indistinguishability is defined analogously, except that the adversary is

given this time a polynomial number of ciphertexts. More formally, for all κ = poly(λ),
and all m1, . . . ,mκ,m

′
1, . . . ,m

′
κ ∈M,

{(Enc(k,m1), . . . ,Enc(k,mκ)) : k← KeyGen(1λ)}
≈c

{(Enc(k,m′1), . . . ,Enc(k,m′κ)) : k← KeyGen(1λ)}
15Recall that the QROM (quantum random oracle model) allows oracle queries (in superposition) to a

perfect random function, and cannot be implemented efficiently in practice.
16In the following, we set M = {0, 1}n for n = poly(λ).

58 Chapter 4. Unclonable Cryptography

Unclonability. Consider a triple of collaborating malicious users Alice, Bob, and Charlie.
In a first phase, Alice splits a random ciphertext into two (possibly entangled) states; and
in a second phase, Bob and Charlie, each one given one of these states and the secret key,
make a guess about the plaintext. The unclonability property states that Bob and Charlie
must not make both a correct guess.

More formally, we define the following game, parameterized by a security parameter λ,
between a challenger and a triple of adversaries (A,B, C). During the game, B and C are
not allowed to communicate.

• Setup phase:

− The challenger samples a key k← KeyGen(1λ) and a message m←$M.

− The challenger computes | ⟩ ← Enc(k,m).

− The challenger sends | ⟩ to A.

• Splitting phase:

− A prepares a bipartite state | ∗⟩12.

− A sends | ∗⟩1 to B, and | ∗⟩2 to C.

• Challenge phase: The challenger sends k to both B and C.

Let m∗1 denotes the output of B, and m∗2 denotes the output of C. A, B, and C win the
game if m∗1 = m and m∗2 = m. We then say that an unclonable encryption scheme has
unclonability if no adversaries can win this game with probability significantly greater
than 1/|M|. That is, if for all triple of QPT adversaries (A,B, C):

Pr


m∗1 = m
∧

m∗2 = m
:

m∗1 ← B(| ∗⟩1 , k),m∗2 ← C(| ∗⟩2 , k)
| ∗⟩12 ← A(| ⟩)
| ⟩ ← Enc(k,m)
m←$M
k← KeyGen(1λ)

 ≤
1
|M|

+ negl(λ)

Unclonable-indistinguishability. Unclonable-indistinguishability property is defined
similarly to unclonability, except that the ciphertext given to Alice is now an encryption
of one of two plaintexts, that she has chosen beforehand.

More formally, we define the following game, parameterized by a security parameter λ,
and between a challenger and a triple of adversaries (A,B, C). During the game, B and C
are not allowed to communicate.

• Setup phase:

− A sends a pair of messages (m0,m1) ∈M2 to the challenger.

− The challenger samples a key k← KeyGen(1λ) and a bit b←$ {0, 1}.

− The challenger computes | ⟩ ← Enc(k,mb).

− The challenger sends | ⟩ to A.

• Splitting phase:

4.4. Unclonable Encryption 59

Challenger
k← KeyGen(1λ)

b←$ {0, 1}

| ⟩ ← Enc(k,mb)

A

m0,m1

| ⟩

B
| ∗⟩1

k

b∗1

C| ∗⟩2

k

b∗2

Winning Condition:
b∗

1 = b

∧
b∗

2 = b

Figure 4.10: Unclonable-indistinguishability of an unclonable encryption scheme. This property
states that no efficient adversary must be able to win this game with probability significantly
greater than 1/2.

− A prepares a bipartite state | ∗⟩12.

− A sends | ∗⟩1 to B, and | ∗⟩2 to C.

• Challenge phase: The challenger sends k to both B and C.

Let b∗1 denotes the output of B, and b∗2 denotes the output of C. A, B, and C win the game
if b∗1 = b and b∗2 = b. We then say that an unclonable encryption scheme has unclonability
if no adversaries can win this game with probability significantly greater than 1/2. In
other words, if for all triple of QPT adversaries (A,B, C):

Pr


b∗1 = b
∧

b∗2 = b
:

b∗1 ← B(| ∗⟩1 , k), b∗2 ← C(| ∗⟩2 , k)
| ∗⟩12 ← A(| ⟩)
| ⟩ ← Enc(k,mb)
b←$ {0, 1}
(m0,m1)← A(1λ)
k← KeyGen(1λ)


≤ 1

2 + negl(λ)

We provide an illustration of this game in Figure 4.10.

4.4.2 Public Unclonable Encryption
We now define unclonable encryption in the public settings. As it is merely the same as
its private counterpart, except that the scheme now uses two keys — a private key for
decrypting, and a public key for encrypting — and the definitions capture the fact that
the public key is available to the adversaries, we highlight the differences between public
and private schemes in blue.

Definition 29 (Public Unclonable Encryption). A public unclonable encryption scheme
for a message space M is composed of three algorithms (KeyGen,Enc,Dec) defined in the
following way:

60 Chapter 4. Unclonable Cryptography

• (sk, pk) ← KeyGen(1λ). The key generation algorithm KeyGen takes as input a
security parameter, and returns a secret key sk, and a public key pk.

• | ⟩ ← Enc(pk,m). The encryption algorithm Enc takes as input a public key pk and
a classical message m ∈M and returns a quantum ciphertext | ⟩.

• m← Dec(sk, | ⟩). The decryption algorithm Dec takes as input a secret key sk and
a quantum ciphertext | ⟩ and returns a classical message m.

We present below the correctness, indistinguishability, and unclonability properties that
a public unclonable encryption scheme must satisfy, as well as the additional unclonable-
indistinguishability property.

Correctness. A public unclonable encryption scheme has correctness if, for any message
m ∈M,

Pr
[
Dec(sk, | ⟩) = m : | ⟩ ← Enc(pk,m)

(sk, pk)← KeyGen(1λ)

]
≥ 1− negl(λ)

Indistinguishability. Indistinguishability for public key unclonable encryption scheme
is defined through a game, in which a computationally bounded adversary Alice receives
a random public key, then chooses two messages of same length. The encryption of one
of these messages (at random) is finally given to her, and she must not be able to guess
which message has been encrypted with probability significantly greater than 1/2.

More formally, a public unclonable encryption scheme has indistinguishability if, for
any QPT adversary A,

Pr


|m∗0| = |m∗1|

∧
b∗ = b

:

b∗ ← A(|ϕ⟩ , | ⟩)
| ⟩ ← Enc(pk,m∗b)
b←$ {0, 1}
((m∗0,m∗1), |ϕ⟩)← A(pk)
(sk, pk)← KeyGen(1λ)

 ≤
1
2 + negl(λ)

where A is stateful, and |ϕ⟩ represents its memory state.
Note that, in the public settings, there is no notion of one-time or many-time indis-

tinguishability, as the adversary is given the public key, and hence can generate as many
(message, ciphertext) pairs as she wants.

Unclonability. A public unclonable encryption scheme has unclonability if, for all triple
of QPT adversaries (A,B, C):

Pr


m∗1 = m
∧

m∗2 = m
:

m∗1 ← B(| ∗⟩1 , sk),m∗2 ← C(| ∗⟩2 , sk)
| ∗⟩12 ← A(pk, | ⟩)
| ⟩ ← Enc(pk,m)
m←$M
(sk, pk)← KeyGen(1λ)

 ≤
1
|M|

+ negl(λ)

4.4. Unclonable Encryption 61

Unclonable-indistinguishability. A public unclonable encryption scheme has unclonable-
indistinguishability if, for all triple of QPT adversaries (A,B, C):

Pr


b∗1 = b
∧

b∗2 = b
:

b∗1 ← B(| ∗⟩1 , sk), b∗2 ← C(| ∗⟩2 , sk)
| ∗⟩12 ← A(pk, | ⟩)
| ⟩ ← Enc(pk,mb)
b←$ {0, 1}
(m0,m1)← A(pk, 1λ)
(sk, pk)← KeyGen(1λ)


≤ 1

2 + negl(λ)

4.4.3 Construction
In this subsection, we present a construction of a private unclonable encryption scheme,
presented in a work of Broadbent and Lord (2020).

Broadbent and Lord’s construction. We start with the protocol of Broadbent and
Lord (2020). Let n = poly(λ), and set the message space M = {0, 1}n. The secret key
in this protocol is a random description of an n-qubits BB84 state (r, θ). Encrypting a
message bit m is done by preparing and returning the quantum ciphertext |(m⊕ r)θ⟩ (the
BB84 state whose description is (m ⊕ r, θ)). Finally, in order to decrypt a ciphertext
|(m⊕ r)θ⟩, given the key (r, θ), one simply measures the state in basis θ, then uncompute
the mask by XOR-ing the outcome with x.

We provide a more formal description of this construction below.

Construction 6: Broadbent and Lord’s Unclonable Encryption Scheme
KeyGen(1λ) :

− Set n = poly(λ).

− Sample an n-long BB84 description, that is r ←$ {0, 1}n, and
θ ←$ {0, 1}n such that |θ| = n/2.

− Return (r, θ).

Enc((r, θ),m) :

− Compute x = m⊕ r.

− Return |xθ⟩.

Dec((r, θ), | ⟩) :

− Measure | ⟩ in basis θ, let x denotes the outcome.

− Return x⊕ r.

The correctness of this protocol is immediate, and the indistinguishability comes from
the indistinguishability of two one-time padded bitstrings with an unknown key. Finally,
the unclonability property comes directly from the monogamy-of-entanglement property
of BB84 states. More precisely, consider Alice, Bob, and Charlie winning the unclonability
game of this scheme with some probability p, then another triple of adversaries, Alex,
Billy, and Clover, wins the aforementioned monogamy-of-entanglement game with the

62 Chapter 4. Unclonable Cryptography

same probability p. Alex first simulates Alice on her input |xθ⟩, and sample a random
n-long bitstring r. Note that |xθ⟩ follows the exact same distribution as |(m⊕ r)θ⟩ — an
encryption of the message m = x⊕ r with a random key (r, θ) in the scheme. Then, Alex
sends the two states she received from simulating Alice, as long as the bitstring r, to Billy
and Clover. The latter respectively simulate Bob and Charlie on, as input, the state and
bitstring received from Alex, and the basis θ received by the challenger. The outcome of
Bob and Charlie are both m with probability p, hence Billy and Clover both return these
outcomes, XOR-ed with r to both guess x with the same probability p.

This protocol, on the other hand, does not satisfy unclonable-indistinguishability, and
is also secure only if a key is used for no more than one message. To see that the latter
property does not hold, consider this simple attack, performed by an adversary Alice,
provided with some κ copies of the encryption of the message 0 . . . 0, that is |rθ⟩⊗· · ·⊗|rθ⟩.
She measures the two first copies in the rectilinear basis to get outcomes r(1) and r(2).
Now, she knows that, on the indices i where r(1)

i ̸= r
(2)
i (on average 1/4 of the indices),

she measured with the “wrong” basis, hence θi = 1. She repeats this operation with the
other copies, and keeps comparing the outcomes. Formally, for any index i for which she
measured in the wrong basis (that is θi = 1), the probability that all the measurement
outcomes are the same on this index is negligible in κ, meaning that, if κ is polynomial in
the security parameter, she completely learns θ (hence r by measuring a last copy in basis
θ), and breaks the scheme.

Broadbent and Lord also presented a simple attack against this construction’s unclonable-
indistinguishability property in the case where the messages’ length n is at least 2. Alice
sends m0 = 00 and m1 = 11 as the two candidate messages to the challenger. When
receiving the encryption | ⟩ of one of these messages, she literally splits it in half, sending
the first register |(b⊕ r1)θ1⟩ to Bob, and the second one |(b⊕ r2)θ2⟩ to Charlie. Bob and
Charlie can then both simply decrypt their half message using the key (r, θ) they receive
in the challenge phase, and output b.

While this limitation can be seen as a problem for such a scheme at first glance, Ananth,
Kaleoglu, Li, Liu, and Zhandry (2022) show how to generically upgrade a one-time private
scheme to a fully-secure private scheme assuming pseudorandom functions, or even to a
public scheme, assuming functional encryption. We present the first transformation in the
following subsection.

One-Time to Many-Time Transformation

We present in this subsection a transformation to uplift a one-time secure private unclonable
encryption scheme to a many-time secure one, presented by Ananth, Kaleoglu, Li, Liu,
and Zhandry (2022). In addition to the one-time secure scheme, this transformation
uses a symmetric classical encryption scheme, with a special fake-key property, that we
describe later. In the final unclonable encryption scheme, a key is simply a key of the
classical scheme. To encrypt a message, one samples a key from the one-time scheme,
encrypt this using the classical scheme, and the message using the one-time scheme. The
final ciphertext is composed of these two (classical and quantum) ciphertexts. Finally,
decrypting a ciphertext consists in, first decrypting the classical ciphertext to get the
one-time key, and then decrypting the quantum one with it to get the message.

4.4. Unclonable Encryption 63

Construction 7: Many-Time Unclonable Encryption Scheme
Let OT.⟨KeyGen,Enc,Dec⟩ be a private unclonable encryption scheme with correct-
ness, one-time indistinguishability, and unclonability. Let SKE.⟨KeyGen,Enc,Dec⟩ be
a (classical) symmetric key encryption scheme with post-quantum indistinguishability
security.

KeyGen(1λ) :

− Sample kSKE ← SKE.KeyGen(1λ).

− Return kSKE.

Enc(kSKE,m) :

− Sample kOT ← OT.KeyGen(1λ).

− Compute c← SKE.Enc(kSKE, kOT).

− Compute | ⟩ ← OT.Enc(kOT,m).

− Return (c, | ⟩).

Dec(kSKE, (c, | ⟩)) :

− Sample kOT ← SKE.Dec(kSKE, c).

− Return OT.Dec(kOT, | ⟩).

The correctness follows from the correctness of both underlying encryption schemes,
and the many-time indistinguishability from their indistinguishability properties: the
indistinguishability of the classical scheme states that all the classical ciphertexts (the
encryptions of the one-time key) can be replaced by encryptions of 0, and, now that the
quantum ciphertexts are no longer dependent of the classical ones, we can invoke the
one-time indistinguishability property of the unclonable encryption scheme to remove all
information on the message they contain, finishing the proof.

The unclonability, however, is more complicated to prove. Indeed, in the corresponding
game, Bob and Charlie are both given the key (here the classical scheme key), and only
indistinguishability security is not enough to argue that the classical ciphertexts can be
replaced by encryption of 0, as we did above. That is where the fake-key property comes
into play. This property provides an efficient way to generate a fake key, from an encryption
of a message m, such that the pair (real key, encryption of m) is indistinguishable from
the pair (fake key, encryption of 0). Crucially, this property allows to generate the fake
key after the encryption of m is computed, and then to simulate the (fake) key, allowing
to proceed in the proof as above.

We note that the same argument applies to unclonable-indistinguishability, meaning
that a one-time private unclonable encryption scheme with unclonable-indistinguishability
can be generically transformed into a many-time one with the same property.

Transformation to public key scheme. Ananth, Kaleoglu, Li, Liu, and Zhandry (2022)
also present a similar transformation, to uplift a one-time private unclonable encryption
scheme to a many-time public one, while preserving the correctness, unclonability, and
unclonable-indistinguishability properties. This transformation is more involved, using

64 Chapter 4. Unclonable Cryptography

this time a functional encryption scheme, but still uses the technique of generating a fresh
new one-time key, and producing a pair of ciphertexts (one of the one-time key and one of
the message), for every encryption.

Quantum Money From Unclonable Encryption

Broadbent and Lord (2020) proposed a way to construct private quantum money from
unclonable encryption. As they just sketch the proof in this paper, we make in the following
an attempt to formalizing this transformation. Let us first precise that we need a private
one-time secure encryption scheme, with unclonable security, and that the quantum money
scheme we obtain is a private one, with a slightly weakened unforgeability definition:
instead of asking for the hardness of generating two valid (coin, identifier) pairs out of one,
we ask the hardness of generating two coins out of a valid (coin, identifier) pair, such that
both coins are valid for the given identifier. As the former task is easier than the latter, it
results in a quantum money scheme with a slightly weaker unforgeability property.

The idea of the transformation is the following. The bank is a database, initially empty,
that maps identifiers to (key, message) pairs. To mint a coin, the bank samples a random
identifier, a key, and a message, and stores them in the database The coin is then the
encryption of the message with the key. Finally, verifying a coin consists in first, finding
in the database the key and message associated to the identifier, then decrypting the coin
with the database’s key and verifying that the outcome is the database’s message. We
present the transformation more formally in the following.

Construction 8: Private Quantum Money From Unclonable Encryption
Let ⟨KeyGen,Enc,Dec⟩ be a private unclonable encryption scheme with one-time indis-
tinguishability. Let M and {Kλ}λ∈N be respectively the message space and key space
of this encryption scheme.

KeyGen(1λ) :

− Set n = poly(λ).

− Initialize and return an empty database db, mapping elements in
{0, 1}n to elements in M×Kλ.

Mint(db) :

− Sample s←$ {0, 1}n.

− Sample k← KeyGen(1λ).

− Sample m←$M.

− Store (k,m) at index s in db.

− Compute | ⟩ ← Enc(k,m).

− Return (s, | ⟩).

Verify(db, (s, | ⟩)) :

− Retrieve (k,m) at index s in db.

4.5. Encryption With Certified Deletion 65

− Compute m′ ← Dec(k, | ⟩).

− Return 1 if m′ = m, otherwise return 0.

The correctness of this scheme is immediate, as the space in which we sample identifiers
is large enough, ruling out collisions with probability close to 1.

To prove that the scheme has unforgeability — more precisely the aforementioned
weaker definition — consider an adversary Alice who breaks the unforgeability property of
this scheme. That is, given a valid (coin, identifier) pair (s, | ⟩), Alice generates |¢∗12⟩ such
that both (|¢∗1⟩ , s) and (|¢∗2⟩ , s) are valid. We present a triple of adversaries Alex, Billy,
and Clover, who break the unclonability game of the underlying unclonable encryption
scheme. Alex, given the encryption | ⟩ of a random message m, samples a random identifier
s←$ {0, 1}n, then simulates Alice on (s, | ⟩) to get | ∗⟩12; she sends | ∗⟩1 to Billy, and | ∗⟩2
to Clover. Note that, as | ∗⟩1 and | ∗⟩2 are both valid quantum coins, it means that they
are both valid encryption of m. Then, Billy and Clover, given the key k, simultaneously run
the decryption algorithm on | ∗⟩1 and | ∗⟩2, yielding m for both of them, hence allowing
them to win the game.

4.5 Encryption With Certified Deletion
Consider the following scenario. Ava wants to store some private information on a remote

— untrusted — server, so that she can retrieve them later. As Ava does not trust the server,
she encrypts the information before sending it. However, when she finally retrieves this
information and/or asks the server to delete them, nothing proves her that the server really
deleted them. A malicious server could have, indeed, kept the information, waiting for the
moment where they will be powerful enough to break the encryption scheme (assuming its
security is based on computational assumptions), or even for a possible leak of the key. If
the encryption scheme used by Alice, on the other hand, has certified deletion, she can
ask the server for a certificate of deletion of the ciphertext, ensuring that the server really
destroyed the ciphertext.

In this section, we define formally what an encryption scheme with certified deletion is,
present the protocol of Bartusek and Khurana (2023) as an example, and finally discuss
some recent advances in the area.

Definitions

We start by formally defining what an encryption scheme with certified deletion is, and
what are its associated properties. We define the scheme for message space of one bit, but
it can be extended naturally for a general message space.

Definition 30 (Encryption Scheme with Certified Deletion). A (public key) encryption
scheme with certified deletion for a message space {0, 1} is composed of five algorithms
⟨KeyGen,Enc,Dec,Del,Verify⟩ defined in the following way.

• (sk, pk) ← KeyGen(1λ). The key generation algorithm takes as input a security
parameter 1λ, and returns a secret key sk and a public key pk.

• (| ⟩ , vk) ← Enc(pk,m). The encryption algorithm takes as input a public key pk
and a classical message m ∈ {0, 1}, and returns a quantum state ciphertext | ⟩, and
a verification key vk for this ciphertext.

66 Chapter 4. Unclonable Cryptography

• m ← Dec(sk, | ⟩). The decryption algorithm takes as input a secret key sk and a
quantum ciphertext | ⟩, and returns a classical message m ∈ {0, 1}.

• crt← Del(| ⟩). The deletion algorithm takes as input a quantum ciphertext | ⟩, and
returns a classical certificate of deletion crt.

• b ← Verify(vk, crt). The verification algorithm takes as input a verification key vk
and a certificate of deletion crt, and returns a bit b, indicating that whether the
certificate is accepted (b = 1) or rejected (b = 0).

An encryption scheme with certified deletion must in addition satisfy the following
properties.

Correctness of decryption. The encryption of a message must always decrypt to this
message. More precisely, for all message m ∈ {0, 1},

Pr
[
Dec(sk, | ⟩) = m : (| ⟩ , vk)← Enc(pk,m)

(sk, pk)← KeyGen(1λ)

]
≥ 1− negl(λ)

Correctness of deletion. The verification algorithm always accepts honestly generated
certificates. More formally, for all message m ∈ {0, 1},

Pr

Verify(vk, crt) = 1 :
crt← Del(| ⟩)
(| ⟩ , vk)← Enc(pk,m)
(sk, pk)← KeyGen(1λ)

 ≥ 1− negl(λ)

Security of deletion. Consider a pair of collaborating adversaries, Alice and Bob,
playing a game in which Alice is first given a random ciphertext, and then asked to return
a valid certificate for this ciphertext. She then sends a quantum state to Bob, who is also
given the secret key of the encryption scheme, and asked to guess which message has been
encrypted. The security of deletion states that they cannot both provide a valid certificate
and make a correct guess. Importantly, and to capture the scenario of a server who would
wait a long time to decrypt the message (see example scenario at the beginning of the
section), we consider that Bob is unbounded. This means that the deletion algorithm
must actually destroy all information on the message in an information-theoretic way.

More formally, for any QPT adversary A, and any adversary B,

Pr


Verify(vk, crt∗)

∧
m∗ = m

:

m∗ ← B(| ∗⟩ , sk)
(crt∗, | ∗⟩)← A(pk, | ⟩)
(| ⟩ , vk)← Enc(pk,m)
m←$ {0, 1}
(sk, pk)← KeyGen(1λ)

 ≤
1
2 + negl(λ)

We provide an illustration of this security property in Figure 4.11.

Construction

We briefly present the scheme of Bartusek and Khurana (2023), based on an idea of
Broadbent and Islam (2020). This scheme uses a classical public key encryption scheme.
A pair of keys in this protocol, is the same as in the underlying encryption scheme.

4.5. Encryption With Certified Deletion 67

Challenger
(sk, pk)← KeyGen(1λ)

m←$ {0, 1}
A

| ⟩ , vk

crt∗
B

| ∗⟩

k

m∗

Winning Condition:
Verify(vk, crt∗)

∧
m∗ = m

Figure 4.11: Security of deletion of an encryption scheme with certified deletion. This property
states that no adversary must win this game with probability significantly greater than 1/2.

Encrypting a message consists in sampling a random n-long BB84 state’s description (x, θ),
for some n = poly(λ), and set the corresponding state as the first part of the ciphertext.
The second part is the message masked by the XOR of all the bits of x, at indices i such
that θi = 0. The third and final part of the ciphertext is the encryption of the basis θ
using the underlying encryption scheme. Decrypting then consists in decrypting the third
part with the secret key, hence recovering the basis; then using this basis to measure the
BB84 state and learn x; and XOR-ing the right bits of x to undo the mask and obtain the
message. The deletion is done by measuring the BB84 state in the Hadamard basis, the
outcome forming the certificate. Finally, verifying such a certificate consists in checking
whether the certificate corresponds to x at the indices where θi = 1.

Construction 9: Encryption With Certified Deletion
Let PKE.⟨KeyGen,Enc,Dec⟩ be a public-key encryption scheme with (post-quantum)
IND-CPA security. Let n = poly(λ).

KeyGen(1λ) :

− Sample (sk, pk)← PKE.KeyGen(1λ).

− Return (sk, pk).

Enc(pk,m) :

− Sample an n-long BB84 description, that is x ←$ {0, 1}n, and θ ←$
{0, 1}n such that |θ| = n/2.

− Prepare | ⟩ = |xθ⟩.

− Compute c1 = m⊕⊕i : θi=0 xi.

− Compute c2 ← PKE.Enc(pk, θ).

− Return (| ⟩ , c1, c2).

Dec(sk, (| ⟩ , c1, c2)) :

− Compute θ ← PKE.Dec(sk, c2).

− Measure | ⟩ in basis θ, let x denotes the outcome.

68 Chapter 4. Unclonable Cryptography

− Return c1 ⊕
⊕

i : θi=0 xi.

Del(| ⟩ , c1, c2):

− Measure | ⟩ in Hadamard basis; let crt denotes the outcome.

− Return crt

Verify((x, θ), crt):

− Let I = {i ∈ J1, nK : θi = 0}.

− Return 1 if crt|Ī = x|Ī .

− Otherwise, return 0.

Security of this scheme. The security of the scheme relies on the following observation.
When given a random BB84 state |xθ⟩, an adversary who does not know θ cannot completely
learn x. Actually, by setting I = {i ∈ {0, 1}n : θi = 0}, they cannot even learn the values
of all xi for i ∈ I, meaning that the quantity x̄I := ⊕

i∈I xi looks like a random bit for
them. As the security of the public-key encryption scheme ensures that c2 does not reveal
any information on θ to an adversary who does not have the secret key, m is completely
masked by x̄I . Let us now analyze the deletion part of the security. If one measures |xθ⟩
in the diagonal basis, then they learn the values of the bits xi for i ∈ {0, 1}n \ I, but they
definitely lose information on xi ∈ I. Because an adversary who does not know θ has no
choice but to measure the whole |xθ⟩ in the diagonal basis to produce a valid certificate,
then they lose all information on the mask x̄I permanently, and thus b remains hidden
from them, even if they become unbounded and are given the secret key.

History of Certified Deletion

In this subsection, we give a brief history of the recent advances in the certified deletion
area. Note that we only consider certified deletion, where the certificate is classical, and not
revocable keys, where it is quantum (as studied by Ananth, Poremba, and Vaikuntanathan
(2023)). Certified deletion was introduced by Broadbent and Islam (2020), in a paper
in which they provided the first security definition and a one-time secure construction.
Bartusek and Khurana (2023), Hiroka, Morimae, Nishimaki, and Yamakawa (2021), and
Hiroka, Morimae, Nishimaki, and Yamakawa (2022) extended the idea of certified deletion
to other cryptographic primitives, from commitments to more advanced encryption schemes
as attribute-based or functional encryption. However, this last work considered private
verification only. The following works focused on constructing certified deletion schemes for
the same primitives, this time with public verification. Hiroka, Morimae, Nishimaki, and
Yamakawa (2021), Bartusek, Garg, Goyal, Khurana, Malavolta, Raizes, and Roberts (2023),
Bartusek, Khurana, Malavolta, Poremba, and Walter (2023), and Bartusek, Khurana, and
Poremba (2023) showed how to construct such schemes with less and less computational
assumptions, ending up with schemes that only require one-way functions.

4.6. Copy-Protection 69

4.6 Copy-Protection
Last, but not least is the copy-protection primitive. Consider a software company that
wishes to sell their program to different users. Provided that the program does not
require internet connection, the company might quickly face the piracy problem. Indeed,
a malicious group of users, Alice, Bob, and Charlie, could decide to share the expense of
the program, by asking Alice to pay for the program, and then copying it and sharing
it with Bob and Charlie. We could also imagine Alice paying for the program, and then
selling copies of it half-price on a black market.

Several solutions have been imagined by program companies in the last decades,
including asking for the user to be connected to the internet when they use the program,
providing hardware keys (often under the form of USB keys) that users need to insert in
their computers whenever they want to run the program, or simply making it complicated
in practice for a malicious user to copy the program, by making use of the underlying
operating system’s security. None of these solutions is truly satisfying, as they use external
means to protect the program, or just make the copying less simple, without completely
protecting it. And this is actually unavoidable: as the program is finally a piece of classical
information, a malicious user, motivated enough, will always be able to copy it.

However, such a solution might exist in the quantum world. Indeed, the no-cloning
principle ensures that it is impossible to copy an arbitrary quantum state. Trying to
leverage this property, inherent to quantum computing, to construct copy-protected
programs led to the field of copy-protection. The idea of this primitive is to have two
procedures, the first one to “protect” a program, that is, given a program’s description,
to produce a quantum encoding of this program. And the second one to evaluate this
quantum encoding on any input. Importantly, this evaluation procedure must not destroy
the state, as we want the “quantum program” to be reusable. The protection of the
program must ensure that no malicious client Alice can produce two functional quantum
programs out of a single copy, where, by functional we mean that both programs can be
used to compute the correct outcome of the original program on a random input.

As we will see in the following, it turns out that it is impossible to construct a copy-
protection scheme for any program, in the sense that there exist families of functions
that cannot be copy-protected. Instead of such a generic construction, we can find in
the literature attempts to construct this primitive for specific classes of functions, but,
even with this restriction, constructing copy-protection schemes remains a difficult task.
Indeed, since the introduction of this primitive by Aaronson (2009), constructions have
been found for only a few families of functions. In particular, we will present in this
section copy-protection for decryption programs (also known as single-decryptor schemes),
copy-protection for pseudorandom functions, and copy-protection for point functions
(functions that return 1 on only one input, and 0 on every other input). Note that we
used both the terms of programs and functions in the paragraph above. In the following,
we will use the function formalism, meaning that the protection procedure takes as input
a function’s description, and the evaluation procedure computes this function on a given
input.

Therefore, in this section, we present definitions and history of copy-protection for the
aforementioned class of functions, and give some constructions examples. In the end of
the section, we discuss a primitive close to copy-protection, named secure software leasing.
This primitive allows a client, previously given a quantum program, to return the program
to the vendor who can check whether the returned program is indeed the one they sent.

70 Chapter 4. Unclonable Cryptography

Definitions

We first give a general definition for copy-protection of an arbitrary family of functions
F , including its correctness and security properties. Note that in the following, for ease
of understanding, we redefine these notions for each specific family of functions that
we consider. Also, we assume that every function f in the family F can be efficiently
described by a — unique — bitstring df . For sake of conciseness, as it is always clear from
the context, we use f for both the function and its description. For instance, we write
Protect(f) instead of Protect(df).

Definition 31 (Copy-Protection of a Family F). A copy-protection scheme, for a family
of functions F with the same domain X and codomain Z, is composed of two algorithms
⟨Protect,Eval⟩ defined in the following way:

• | ⟩ ← Protect(1λ, f). The protection algorithm takes as input a security parameter,
and the classical description of a function f ∈ F , and outputs a quantum encoding
| ⟩ of f .

• z ← Eval(| ⟩ , x). The evaluation algorithm takes as input a quantum encoding | ⟩,
and an input x in X , and outputs a bitstring z in the codomain of F .

In addition, a copy-protection scheme must satisfy the following properties.

Correctness. The evaluation of the quantum encoding of any function f on any input
x, must always return f(x). More precisely, for any f ∈ F and any x ∈ X ,

Pr
[
Eval(| ⟩ , x) = f(x) : | ⟩ ← Protect(1λ, f)

]
≥ 1− negl(λ)

Anti-piracy security. Consider a triple of collaborating malicious users Alice, Bob, and
Charlie. In a first phase, Alice splits the quantum encoding of a random function into two
(possibly entangled) states; and in a second phase, Bob and Charlie, each one given one
of these states and a challenge input, make a guess about the evaluation of the function
on this input. The unclonability property states that Bob and Charlie must not make
both a correct guess. Note that the challenge inputs given to Bob and Charlie can be
different. In particular, the formal definition below is parametrized by a distribution over
challenge pairs, to be distributed to Bob and Charlie. We discuss later in the section the
need for such challenge distributions, through some specific examples. For the moment,
we just claim that, for a given family of functions, some challenge distributions capture
the security we expect from this definition, while others do not, and that this can change
depending on the family we consider.

More formally, we define the following game, parametrized by a security parameter λ,
a distribution D over F , and a family of challenge distributions {Df}f∈F , where each Df
yields pairs over X ×X . The game is between a challenger and a triple of QPT algorithms
(A,B, C).

• Setup phase:

− The challenger samples a function f ← D.

− The challenger computes | ⟩ ← Protect(1λ, f).

4.6. Copy-Protection 71

− The challenger sends | ⟩ to A.

• Splitting phase:

− A prepares a bipartite state | ∗⟩12.

− A sends | ∗⟩1 to B, and | ∗⟩2 to C.

• Challenge phase:

− The challenger samples (x1, x2)←$ Df .

− The challenger sends x1 to B, and x2 to C.

Let z∗1 denotes the output of B, and z∗2 denotes the output of C. A, B, and C win the
game if z∗1 = f(x1) and z∗2 = f(x2). We say that a copy-protection scheme for a family F
has anti-piracy security with respect to the challenge distribution {Df}f∈F if no triple of
adversaries wins this game with probability significantly greater than the so-called trivial
winning probability for this game, defined below.

Definition 32 (Trivial Winning Probability). Consider the following strategy17: Alice
does not split the quantum encoding, and simply forwards it to Bob, while sending nothing
to Charlie. As Bob has the quantum encoding, he makes a correct guess (the correctness
property ensures he can always do it). On the other hand, Charlie only receives his
challenge, and returns the answer that maximizes his chance of making a correct guess.
Denote the winning probability of this strategy as p1, and define p2 similarly, except that
the roles of Bob and Charlie are swapped. We call trivial winning probability max{p1, p2}.

More precisely, let p1(f |x2) be the probability that D sampled f knowing that Charlie’s
input is x2 (this quantity can be computed for any f and x2 out of D and {Df}f∈F).
Then the probability that Charlie makes a correct guess z2 ∈ Z, knowing only x2, is∑
p(f |x2), where the sum is over the functions f such that f(x2) = z2. Thus, the best

answer for Charlie is the one that maximizes this quantity, that is maxz2

∑
p(f |x2). We

define analogously p2(f |x1) as the probability that D sampled f knowing x1, hence the
best answer for Bob is maxz1

∑
p(f |x1). Finally, let p(x1) denotes the probability, averaged

over f ←$ D, that Df yields x1 as the first challenge, and define p(x2) analogously for the
second challenge. The trivial winning probability of the corresponding game is

max
 ∑
x1∈X

p(x1) max
z1∈Z

 ∑
f∈F :f(x1)=z1

p(f |x1)
 , ∑

x2∈X
p(x2) max

z2∈Z

 ∑
f∈F :f(x2)=z2

p(f |x2)


Note that we provided this formula for sake of completeness, but for each family we
consider for copy-protection, we always specify the value of this trivial winning probability.

Impossibility Results

It appears that not all families of functions can be copy-protected. In particular, Aaronson
(2009) showed that it is impossible to construct a copy-protection scheme for learnable
families of functions. These families are such that there exists an efficient procedure

17Note that the adversaries in the strategy are not necessarily efficient.

72 Chapter 4. Unclonable Cryptography

to extract the description of a function given only oracle access to it. The correctness
of a copy-protection ensures that an adversary Alice, given a copy-protected function
from a learnable family, can simulate the oracle access to the function, and hence use the
extraction procedure. This gives her the description of the function, thus allowing the
adversaries to win the anti-piracy game.

Whether all unlearnable families of functions are copy-protectable or not was later
answered by Ananth and La Placa (2021). The authors defined a family of functions that
is not learnable, although not copy-protectable. Functions in this family are tailor-made
for this purpose. More precisely, a function in this family is such that calling it with its
own code yields information on the function, that can later be used to completely recover
the function’s description, and thus win the anti-piracy game. This can on the other hand
not be done with oracle access only, as it does not provide the code of the function, making
it unlearnable.

4.6.1 Copy-Protection of Point Functions
We begin with copy-protection of point functions. Such a function is parametrized by an
n-long bitstring — the point — and returns 0 everywhere, except on this point, where it
returns 1.

In this section, we formally define copy-protection of point functions, present a con-
struction introduced by Coladangelo, Majenz, and Poremba — which, unfortunately, does
not achieve a fully satisfying security — and give a short history of the different attempts
to realize this functionality.

Definitions

We first define point functions.
In all the section, we set n = poly(λ).

Definition 33 (Point Function). A point function PFy with point y ∈ {0, 1}n, is defined
in the following way:

PFy(x) =
{

1 if x = y
0 otherwise

We are now ready to define copy-protection of point functions. The definition follows
the general definition seen above, with X = {0, 1}n, Z = {0, 1}, and with families of point
functions of the form {PFy}y∈{0,1}n , each of them described with its point y.

Definition 34 (Copy-Protection of Point Functions). A copy-protection scheme of a point
functions family F = {PFy}y∈{0,1}n is composed of two algorithms ⟨Protect,Eval⟩ defined
in the following way:

• | ⟩ ← Protect(1λ, y). The protection algorithm takes as input a security parameter,
and a point y ∈ {0, 1}n, and outputs a quantum encoding | ⟩ of PFy.

• z ← Eval(| ⟩ , x). The evaluation algorithm takes as input a quantum encoding | ⟩,
and an input x in {0, 1}n, and outputs a bit z.

In addition, a copy-protection scheme of point functions must satisfy the following
properties.

4.6. Copy-Protection 73

Correctness. The correctness of a copy-protection scheme of point functions is simply
defined following the general definition above, that is, for all y, x ∈ {0, 1}n,

Pr
[
Eval(| ⟩ , x) =

{
1 if x = y
0 otherwise : | ⟩ ← Protect(1λ, y)

]
≥ 1− negl(λ)

Challenge distributions. When defining anti-piracy security of point functions, we
take as function distribution the uniform distribution over {0, 1}n. For the challenge
distributions, however, considering the uniform distribution would be meaningless, as the
trivial winning probability would be almost 1. Indeed, consider that Charlie is given some
challenge x2, and needs to make a guess for PFy(x2). As x2 is uniformly random, and
independent of y, the probability that x2 = y, and hence PF(x2) = 1, is 1/2n. Charlie then
only has to answer 0 to make a correct guess with probability 1− negl(λ). This makes the
anti-piracy security guaranteed for any scheme, as it requires that no adversaries can win
the game with probability significantly greater than this trivial probability, and winning
with probability significantly greater than 1− negl(λ) is simply impossible.

We thus need to find more meaningful challenge distributions. Three of them are
proposed in the literature, namely the product, identical, and non-colliding distributions.
The two first ones are defined according to the following arguments. As any point function
PFy only has two possible outcomes, it seems natural to send, as a challenge, either a
preimage of 1, or a preimage of 0. Then, deciding which preimage to take is done by
sampling uniformly from these preimages, which yields either y for the preimage of 1, or a
uniformly random element in {0, 1}n \{y} for the preimage of 0. This results in a challenge
distribution for Bob, and for Charlie, that yields y with probability 1/2, and any other
element with probability 1/2n+1. This actually defines only the marginal distribution for
these challenges. We finally define the product distribution as the challenge distribution
that samples a challenge from this marginal one for Bob and Charlie independently, and
the identical distribution as the one that samples the same challenge — still from the same
marginal distribution — for both Bob and Charlie.

As we will see in the next chapter, it turns out that constructing copy-protection of
point functions in the plain model remains elusive when considering product or identical
challenge distributions. As the main blocking point is the fact that Bob and Charlie can
both receive the point y as challenge — in which case, it is unknown how to prove security

— another distribution is considered, in which this event does not happen. It results in
the non-colliding distribution, that is the product distribution if we remove the case when
both Bob and Charlie receive the point y.

We define more formally, the product, identical, and non-colliding challenge distribu-
tions below.

Definition 35 (Challenge Distributions For Point Functions).

• Product distribution: We denote as product distribution the family of distributions
Dprod = {Dprody }y∈{0,1}n , defined as the following.

− Sample x′1, x′2 ←$ {0, 1}n.

− Return


(y, y) with probability 1/4
(y, x′2) with probability 1/4
(x′1, y) with probability 1/4
(x′1, x′2) with probability 1/4

74 Chapter 4. Unclonable Cryptography

• Identical distribution: We denote as identical distribution the family of distribu-
tions Did = {Didy }y∈{0,1}n , defined as the following.

− Sample x′ ←$ {0, 1}n.

− Return
{

(y, y) with probability 1/2
(x′, x′) with probability 1/2

• Non-colliding distribution: We denote as non-colliding distribution the family of
distributions Dnc = {Dncy }y∈{0,1}n , defined as the following.

− Sample x′1, x′2 ←$ {0, 1}n.

− Return


(y, x′2) with probability 1/3
(x′1, y) with probability 1/3
(x′1, x′2) with probability 1/3

Remark that the distributions we just defined are not exactly the ones we described in
the paragraph above. Consider for instance the identical definition (the same argument
works for the two other distributions). We described it as yielding (y, y) with probability
exactly 1/2, while in the formal definition given above, this probability is slightly above
1/2, as we do not ensure that x′ is different from y. This actually does not make a
difference, as the two cases — whether we ensure that x′ is different from y or not — are
indistinguishable.

Trivial winning probability. The trivial winning probability for both the product and
identical challenge distributions is the same, as they both have the same marginals. When
Charlie is given a challenge x2, he learns that the point y can be x2 with probability 1/2,
in which case the correct guess would be 1, or another random point, also with probability
1/2, in which case the correct guess is 0. The strategy that maximizes his chances of
answering correctly is then to return a random bit, allowing Alice, Bob, and him to win
with probability 1/2, which is thus the trivial winning probability. The same reasoning
applies to non-colliding distribution, except that in this case, Charlie has better chances
to answer correctly if he returns 0. The trivial winning probability for this distribution is
more precisely 2/3.

Anti-piracy security. We give the definition with respect to the product distribution as
an example below, as the two other definitions — with respect to the two other distributions

— also follow the general definition described above. This definition is defined through a
game, parametrized by a security parameter λ, and between a challenger and a triple of
QPT algorithms (A,B, C). During the game, B and C are not allowed to communicate.

• Setup phase:

− The challenger samples a point y ←$ {0, 1}n.

− The challenger computes | ⟩ ← Protect(1λ, y).

− The challenger sends | ⟩ to A.

• Splitting phase:

4.6. Copy-Protection 75

Challenger
y ←$ {0, 1}n

| ⟩ ←$ Protect(1λ, y)

(x1, x2)←$ Dprod
y

A
| ⟩

B
| ∗⟩1

x1

z∗1

C| ∗⟩2

x2

z∗2

Winning Condition:
z∗

1 = PFy(x1)
∧

z∗
2 = PFy(x2)

Figure 4.12: Anti-piracy security of a copy-protection scheme of point functions, with respect to
the product distribution. This property states that no triple of efficient adversaries must win this
game with probability significantly greater than 1/2.

− A prepares a bipartite state | ∗⟩12.

− A sends | ∗⟩1 to B, and | ∗⟩2 to C.

• Challenge phase:

− The challenger samples (x1, x2)← Dprody . That is, x1 = y or x1 ←$ {0, 1}n, with
probability 1/2 for each case, and, independently, x2 = y or x2 ←$ {0, 1}n, with
probability 1/2 for each case.

− The challenger sends x1 to B, and x2 to C.

Let z∗1 denotes the output of B, and z∗2 denotes the output of C. B makes a correct guess
if z∗1 = PFy(x1), that is if x1 = y and z∗1 = 1 or if x1 ̸= y and z∗1 = 0. Similarly, C makes a
correct guess if z∗2 = PFy(x2), that is if x2 = y and z∗2 = 1 or if x2 ̸= y and z∗2 = 0. A, B,
and C win the game if both B and C make a correct guess. We say that a copy-protection
scheme of point functions has anti-piracy security with respect to the product distribution
if no triple of QPT adversaries wins this game with probability significantly greater than
1/2.

In other words, if for all triple of QPT adversaries (A,B, C):

Pr


z∗1 = PFy(x1)

∧
z∗2 = PFy(x2)

:

z∗1 ← B(| ∗⟩1 , x1); z∗2 ← C(|
∗⟩2 , x2)

(x1, x2)←$ Dprody

| ∗⟩12 ← A(| ⟩)
| ⟩ ← Protect(1λ, y)
y ←$ {0, 1}n

 ≤
1
2 + negl(λ)

We provide an illustration of this game in Figure 4.12.

76 Chapter 4. Unclonable Cryptography

Coladangelo, Majenz, and Poremba’s construction

Coladangelo, Majenz, and Poremba (2024) presented the first construction of copy-
protection of point functions that does not rely on any “special oracle”18, only on two
quantum random oracles, Og and Oh. The protection of a point y in this protocol consists
in a pair (|rθ⟩ , s), where r is a random bitstring, θ is the image of the point y under
the first oracle Og, and s the image of r under the second oracle Oh. We discuss the
importance of these oracles in the following. Then, to evaluate a point x given an encoding
(|rθ⟩ , s), one measures the BB84 state |rθ⟩ in basis Og(x), checks whether the image of
the outcome under Oh is s, and returns 1 or 0 accordingly.

Construction 10: Copy-Protection of Point-Functions
Set n,m = poly(λ) such that m(λ) > λ. Let Og : {0, 1}n → {0, 1}m, and Oh : {0, 1}m →
{0, 1}λ two quantum random oracles.

Protect(1λ, y) :

− Compute θ ← Og(y).

− Sample r ←$ {0, 1}n.

− Compute s← Oh(r).

− Return
(
|rθ⟩ , s

)
.

Eval((| ⟩ , s) , x) :

− Compute θ ← Og(x).

− Apply Hθ to | ⟩; store the result in a working register | ′
⟩.

− Apply Oh in superposition to | ′
⟩; store the result in a working register

|
′′
⟩.

− Coherently checks whether | ′′
⟩ is equal to s or not: store the result (1

if it does, 0 otherwise) in a working register | ′′′
⟩.

− Measure | ′′′
⟩ and return the outcome.

On the need for random oracles. We briefly discuss why this scheme requires quantum
random oracles. Consider first the same scheme, without oracles. That is, a protection is
of the form (|ry⟩ , r). Now, an evaluation of this encoding on a point x, differing from y
only on the first input would output the correct result 0 only with probability 1/2. Using
the first oracle Og solves this issue as, informally speaking, the difference between the
images of two points under the oracle, does not depend on the difference between these
points. Concerning the second oracle, its usefulness is that an adversary could potentially
use the value r of the BB84 state to break the anti-piracy security. The use of this oracle
informally prevents such strategy.

18By that, we mean that their construction only uses a quantum random oracle, while the previous
constructions proposed by Aaronson and Christiano (2012) and Aaronson, Liu, Liu, Zhandry, and Zhang
(2021) are related to tailor made quantum and classical oracles.

4.6. Copy-Protection 77

Anti-piracy security. The security of this scheme is proven only in the aforementioned
non-colliding distribution, and does not achieve super-polynomial security, as it is usually
expected.19 Informally, the reason is that the proof of security relies on what we call
simultaneous-extraction. The idea is to reduce the task of winning the anti-piracy game,
where Bob and Charlie must simultaneously distinguish between two different values, to a
task where they must both guess a certain value. Then, we want to argue that if they
can both distinguish with a significant advantage over the trivial winning probability,
they both can guess the right value with some non-negligible probability (related to the
aforementioned advantage). We do know techniques to prove such a search-to-decision
reduction in the classical world, and even in the quantum one when we consider only local
adversaries. Unfortunately, these techniques do not translate well in the non-local case
(essentially because the state shared by Bob and Charlie can be entangled), and induce a
loss in the winning probability. As our results suffer the same sort of issues, we give a
more in-depth explanation in Chapter 5.

4.6.2 Secure Software Leasing
In this subsection, we describe the “revocable” variant of copy-protection, the so-called
secure software leasing, introduced by Ananth and La Placa (2021). This primitive is
revocable in the sense that it adds a verification procedure to a regular copy-protection
scheme, which verifies whether a given state is a copy-protected function. The typical
use-case of this primitive is when a vendor wants to lease a program to a client, and get it
back after some time. The vendor then creates the copy-protected program and sends it
to the client, who can evaluate it on any number of inputs, as in regular copy-protection.
When the time limit is reached, the client sends a state — supposedly the copy-protected
program — back to the vendor, who can check whether this is indeed the copy-protected
program using the verification procedure. In practice, the protection in such a scheme is
done with an additional secret key, which is also used for the verification.

Similarly to copy-protection, the definition of secure software leasing is with respect
to a family of functions. In the following, we define formally secure software leasing for
point functions, and present a secure protocol for secure software leasing of this family,
introduced by Coladangelo, Majenz, and Poremba (2024).

Definitions

Definition 36 (Secure Software Leasing of Point Functions). A secure software leasing
scheme of a point functions family F = {PFy}y∈{0,1}n is composed of four algorithms
⟨KeyGen,Protect,Eval,Verify⟩ defined in the following way:

• k← KeyGen(1λ). The key generation algorithm takes as input a security parameter
1λ, and returns a secret key k.

• | ⟩ ← Protect(k, y). The protection algorithm takes as input a secret key k, and a
point y ∈ {0, 1}n, and outputs a quantum encoding of PFy | ⟩.

• z ← Eval(| ⟩ , x). The evaluation algorithm takes as input a quantum encoding | ⟩,
and an input x in {0, 1}n, and outputs a bit z.

19By superpolynomial security, we mean that no adversary can win the anti-piracy game with probability
greater than 1/poly(λ).

78 Chapter 4. Unclonable Cryptography

• b ← Verify(k, y, | ⟩). The verification algorithm takes as input a secret key k, a
point y, and a quantum encoding | ⟩, and returns a bit b, indicating whether the
encoding is valid for the point y (b = 1) or not (b = 0).

In addition, a secure software leasing scheme of point functions must satisfy the
following properties.

Correctness of evaluation. The correctness of evaluation of a secure software leasing
scheme of point functions is the same as the one for copy-protection. That is, the evaluation
of an honestly generated quantum encoding of a function must return the correct output.
Formally, for all y, x ∈ {0, 1}n,

Pr
[
Eval(| ⟩ , x) =

{
1 if x = y
0 otherwise : | ⟩ ← Protect(k, y)

k← KeyGen(1λ)

]
≥ 1− negl(λ)

Correctness of verification. An honestly generated program must always be considered
valid by the verification procedure. Formally, for all y, x ∈ {0, 1}n,

Pr
[
Verify(k, | ⟩) = 1 : | ⟩ ← (k, y)

k← KeyGen(1λ)

]
≥ 1− negl(λ)

Finite-term lessor security. Consider a malicious client Alice, who is given the
quantum encoding of a program, and wants to be able to continue using it after the
time-limit is over, while convincing the vendor that she has sent them back the valid
quantum encoding. The finite-term lessor security states that such task is impossible.

More formally, we define the following game, between a challenger, and a pair of
adversaries A, and B, and parametrized by a security parameter λ.

• Setup phase:

− The challenger samples a key k← KeyGen(1λ) and a point y ←$ {0, 1}n.

− The challenger computes | ⟩ ← Protect(k, y).

− The challenger sends | ⟩ to A.

• Splitting phase:

− A prepares a state | ∗⟩12.

− A sends | ∗⟩1 to the challenger, and | ∗⟩2 to B.

• Challenge phase:

− The challenger computes b← Verify(sk, | ∗⟩1).

− With probability 1/2, the challenger sets x = y, or, also with probability 1/2,
samples x←$ {0, 1}n.

− The challenger sends x to B.

4.6. Copy-Protection 79

Challenger
k← KeyGen(1λ)

y ←$ {0, 1}n

| ⟩ ← Protect(k, y)

x←$ Dy

A

| ⟩

| ∗⟩1

B
| ∗⟩2

x

z∗

Winning Condition:
Verify(k, | ∗⟩1) = 1

∧
z∗ = PFy(x)

Figure 4.13: Finite-term lessor security of a secure software leasing scheme. Dy denotes the
distribution that yields y with probability 1/2, and a uniformly random bitstring in {0, 1}n with
probability 1/2. This security property states that no efficient adversaries must be able to win
this game with probability significantly greater than 1/2.

Let z∗ denotes the output of B. A and B win the game if b = 1 and z∗ = PFy(x). We
then say that a secure software leasing scheme has finite-term lessor security if no efficient
adversaries can win this game with probability significantly greater than 1/2. In other
words, if for all QPT adversaries A, and B:

Pr


b = 1
∧

z∗ = PFy(x)
:

z∗ ← B(| ∗⟩2 , x)
x = y w.p. 1/2 or x←$ {0, 1}n w.p. 1/2
b← Verify(k, | ∗⟩1)
(| ∗⟩12)← A(| ⟩)
| ⟩ ← Protect(k, y)
y ←$ {0, 1}n
k← KeyGen(1λ)


≤ 1

2 + negl(λ)

We provide an illustration of this finite-term lessor security in Figure 4.13.

Remark 2. We presented the definition of Coladangelo, Majenz, and Poremba (2024).
Note that, in the original definition by Ananth and La Placa (2021), the verification
algorithm does not take the description of the function (here, the point y) as input.
We note that this difference is actually insignificant, as we can generically turn any
secure software leasing scheme following the definition we presented above to a secure
software leasing scheme with the same correctness and security properties following the
original definition. This transformation only assumes a symmetric encryption scheme with
(post-quantum) semantic security.

Let us denote a scheme following the definition above as the CMP scheme, and the
scheme following the original definition obtained by applying the transformation as the
AL scheme. A key in the AL scheme is composed of a key in the CMP scheme, and an
encryption key. Protecting a function in the AL scheme consists in protecting it using
the CMP scheme, and adding to it the encryption of the function’s description. Finally,
to verify a quantum software in the AL scheme, decrypt the ciphertext part to get the
description of the function, and use the verification procedure of the CMP scheme.

The semantic security of the underlying encryption scheme ensures that we can replace
the encryption of the function’s description by an encryption of 0, resulting in no advantage
for the adversaries in the finite-term lessor security game.

80 Chapter 4. Unclonable Cryptography

Construction

We present below the construction of a secure software leasing scheme of point functions
introduced by Coladangelo, Majenz, and Poremba (2024). This construction is based
on their copy-protection scheme (construction 10), more precisely the protection and
evaluation algorithms are the same. Verifying an alleged quantum encoding of the point
function PFy consists in running the evaluation algorithm on the point y, and accepting
the encoding only if the outcome is 1.

We present this modified construction formally below. As the construction does not
use keys, we omit the key generation procedure, and the keys as inputs.

Construction 11: Secure Software Leasing of Point Functions
Set n,m = poly(λ) such that m(λ) > λ. Let Og : {0, 1}n → {0, 1}m, and Oh : {0, 1}m →
{0, 1}λ two quantum random oracles.

Protect(1λ, y) :

− Compute θ ← Og(y).

− Sample r ←$ {0, 1}n.

− Compute s← Oh(r).

− Return
(
|rθ⟩ , s

)
.

Eval((| ⟩ , s) , x) :

− Compute θ ← Og(x).

− Apply Hθ to | ⟩; store the result in a working register | ′
⟩.

− Apply Oh in superposition to | ′
⟩; store the result in a working register

|
′′
⟩.

− Coherently check whether | ′′
⟩ is equal to s or not: store the result (1

if it does, 0 otherwise) in a working register | ′′′
⟩.

− Measure | ′′′
⟩ and return the outcome.

Verify(y, (| ⟩ , s)) :

− Compute z ← Eval((| ⟩ , s), y).

− Return z.

Correctness and security. The correctness of evaluation and verification both follow
immediately from the correctness of the underlying copy-protection protocol. Contrarily
to its copy-protection version, this construction achieves standard security. We try to
give some intuition on why this is the case, we refer the interested reader to the paper of
Coladangelo, Majenz, and Poremba (2024) for more detailed information and a complete
proof. Notice that the finite-term lessor security game can be seen as a game between three
adversaries, Alex, Billy, and Clover, and a challenger, analogously to the copy-protection
game. In this version of the game, Alex and Billy respectively represent Alice and Bob

4.6. Copy-Protection 81

(the adversaries defined above), and Clover is given the “fake” quantum encoding | ∗⟩1,
and a challenge y, and must run the evaluation algorithm on it, and return the outcome.
This version of the game is equivalent to the one we presented, as Clover actually plays the
role of the challenger, in the verification part. This important constraint on Clover (recall
that in copy-protection games, Charlie can run any (efficient) quantum computation on
his state and challenge) is actually the reason why the proof completely follows, and this
construction achieves standard security.

4.6.3 History of Copy-Protection and Secure Software Leasing
In this section, we present a history of different results and constructions regarding
copy-protection and secure software leasing.

Aaronson (2009) defined copy-protection and presented a construction based on a
quantum oracle. In this paper, he also proved that no learnable functions (roughly,
functions whose behavior can be learned from a polynomial number of input-output pairs)
can be copy-protected. This field did not get a lot of attention until recently, where Ananth
and La Placa (2021) defined secure software leasing and proved two impossibility results:
one on the impossibility of secure software leasing for learnable functions and the other
one on the impossibility of copy-protection for the so-called de-quantumizable functions,
a family of functions that are not learnable, thus extending the impossibility result of
Aaronson. In the same paper, they constructed a secure software leasing protocol for
a subclass of evasive functions, namely searchable compute-and-compare functions. The
same year, Coladangelo, Majenz, and Poremba20 presented a first concrete copy-protection
protocol for point functions in the quantum oracle model. However, this protocol does not
achieve standard security (an adversary can win the anti-piracy game with a constant — yet
small — probability). Nevertheless, they extended this protocol to a secure software leasing
one, with standard security. Aaronson, Liu, Liu, Zhandry, and Zhang (2021) provided a
new construction for copy-protection, this time based only on a classical oracle, improving
his previous construction. This paper also provides a copy-detection construction for any
watermarked functions. We will not detail the notions of copy-detection (a task close to
copy-protection but weaker than it) and watermarkable functions, we refer the reader to
the papers of Aaronson, Liu, Liu, Zhandry, and Zhang (2021) and of Cohen, Holmgren,
Nishimaki, Vaikuntanathan, and Wichs (2016) for more information on these notions. Soon
after, Kitagawa, Nishimaki, and Yamakawa (2021) constructed a secure software leasing
scheme for pseudorandom functions and searchable compute-and-compare functions based
on a relaxed version of watermarking. Broadbent, Jeffery, Lord, Podder, and Sundaram
(2021) showed that copy-protection can be achieved without any assumptions. To achieve
it, the authors used a weaker definition for correctness, namely correctness with respect to
a distribution, and a new adversary model: the honest-malicious adversary. In this model,
in the anti-piracy security game, Bob can perform any computation on σB to return yB
as in the original definition, but Charlie has to use the Eval algorithm on σC and xC and
returns the output as yC . They also proved that copy-protection with honest-malicious
adversary implies secure software leasing. Coladangelo, Liu, Liu, and Zhandry (2021)
presented the first construction of a copy-protection scheme in the plain model by using
coset states to copy-protect a subclass of pseudorandom functions. Their construction
is based in particular on the computational hardness of LWE and on the existence of

20This paper was published a few years later: Coladangelo, Majenz, and Poremba (2024)

82 Chapter 4. Unclonable Cryptography

post-quantum indistinguishable obfuscation. Finally, two papers (Ananth, Kaleoglu, Li,
Liu, and Zhandry (2022) and Ananth, Kaleoglu, and Liu (2023)) improved the result of
Coladangelo, Majenz, and Poremba (2024) by constructing a copy-protection scheme for
point functions in the quantum oracle model (the former paper leverages coset states,
while the latter only BB84 states), with standard security.

Remark that, apart from the copy-protection of pseudorandom functions of Coladangelo,
Liu, Liu, and Zhandry (2021), all the other schemes considering standard malicious-
malicious adversaries — as opposed to aforementioned honest-malicious adversaries —
are constructed in the quantum random oracle model. In particular, copy-protection
for point functions in the plain model (that is without using the random oracle model)
remains elusive. With this in mind, Kitagawa and Nishimaki (2023), Chevalier, Hermouet,
and Vu (2023), Ananth and Behera (2024), and Chevalier, Hermouet, and Vu (2024b)
proposed constructions for such a scheme. Although the security of these constructions
are indeed in the plain model, the first one only achieves security based on a relaxed
security notion (named one-out-of-many security), the second one achieves security for the
arguably “less natural” non-colliding challenge distribution, and the two last constructions
rely on unproven conjectures.

In the next section, we present a special copy-protection primitive, single-decryptor,
that provides unclonable decryption keys.

4.6.4 Single-Decryptor

Consider a public key infrastructure — that is a network of users all owning a pair of
encryption and decryption keys. Some user, Ava, wants to give her friend Alice the ability
to decrypt the messages she (Ava) encrypts. With a regular encryption scheme, Ava would
need to give Alice the decryption key, but she is afraid that Alice might be malicious
and try to share the key with other users. A single-decryptor scheme (or simply single-
decryptor) exactly gives a solution to this issue, by allowing Ava to generate quantum
unclonable decryption keys. With such a scheme, she can give Alice a quantum decryption
key, ensuring her that Alice will not be able to send the key to anyone else, without losing
the ability to decrypt her messages.

This primitive actually exists in the private and in the public settings. In both settings,
a secret key is used to generate decryption keys; in the private one, this secret key also
serves for encrypting; while in the public one, there is another (public) key for this purpose.

As mentioned above, single-decryptor can be seen as a special case of copy-protection,
where each function to protect is defined by the decryption algorithm of a (public or
private) encryption scheme, hardwired with a decryption key. The distribution over the
functions for the anti-piracy security is then defined according to the key generation
procedure of the underlying encryption scheme, and the challenge distributions simply
yields pairs of random ciphertext. Remark that we mentioned that single-decryptor is not
exactly captured by copy-protection, as the correctness property is slightly different, as we
will see in the following.

In the rest of this subsection, we formally define single-decryptors, and give an example
construction, presented by Georgiou and Zhandry (2020).

4.6. Copy-Protection 83

Definitions

We define single-decryptor in the private settings only, as the public version is defined
similarly in a natural way. That is, the key generation also returns a public key, that is
used as input in the encryption algorithm, and the adversaries in the security definitions
are given this encryption key.

Definition 37 (Single-Decryptor). A single-decryptor for a message spaceM21 is composed
of four algorithms ⟨KeyGen,QKeyGen,Enc,Dec⟩ defined in the following way:

• k← KeyGen(1λ). The key generation algorithm takes as input a security parameter
1λ, and returns a secret key k.

• | ⟩ ← QKeyGen(k). The protection algorithm takes as input a secret key k, and
outputs a quantum decryption key | ⟩.

• c ← Enc(k,m). The evaluation algorithm takes as input a key k, and a message
m ∈M, and outputs a classical ciphertext c.

• m← Dec(| ⟩ , c). The verification algorithm takes as input a quantum key | ⟩, and a
ciphertext c, and returns a message m.

In addition, a single-decryptor must satisfy the following properties.

Correctness. The encryption of a message must always decrypt to this message. More
precisely, for all message m ∈M,

Pr

Dec(| ⟩ , c) = m :
c← Enc(k,m)
| ⟩ ← QKeyGen(k)
k← KeyGen(1λ)

 ≥ 1− negl(λ)

Indistinguishability. We distinguish one-time indistinguishability from many-time
indistinguishability. For a private unclonable encryption scheme to have one-time in-
distinguishability, no malicious (computationally bounded) adversary must be able to
distinguish between the ciphertexts of two messages of same length. More formally, for all
m,m′ ∈M such that |m| = |m′|,

{Enc(k,m) : k← KeyGen(1λ)}
≈c

{Enc(k,m′) : k← KeyGen(1λ)}

Many-time indistinguishability is defined analogously, except that the adversary is
given this time a polynomial number of ciphertexts. More formally, for all κ = poly(λ),
and all m1, . . . ,mκ,m

′
1, . . . ,m

′
κ ∈M such that |mi| = |m′i| for every i,

{(Enc(k,m0), . . . ,Enc(k,mκ)) : k← KeyGen(1λ)}
≈c

{(Enc(k,m′0), . . . ,Enc(k,m′κ)) : k← KeyGen(1λ)}
21Similarly to unclonable encryption, we set in the following M = {0, 1}n for n = poly(λ).

84 Chapter 4. Unclonable Cryptography

Anti-piracy security. Consider a triple of collaborating malicious users Alice, Bob, and
Charlie. In a first phase, Alice splits a random quantum key into two (possibly entangled)
states; in a second phase, Bob and Charlie, each one given one of these states and a
random ciphertext, make a guess about the plaintext. The unclonability property states
that Bob and Charlie must not make both a correct guess, with probability greater than
1/|M|.

More formally, we define the following game, parametrized by a security parameter λ,
and between a challenger and a triple of adversaries (A,B, C). During the game, B and C
are not allowed to communicate.

• Setup phase:

− The challenger samples a key k← KeyGen(1λ).

− The challenger prepares | ⟩ ← QKeyGen(k).

− The challenger sends | ⟩ to A.

• Splitting phase:

− A prepares a bipartite state | ∗⟩12.

− A sends | ∗⟩1 to B, and | ∗⟩2 to C.

• Challenge phase:

− The challenger samples a message m←$M.

− The challenger computes c← Enc(k,m).

− The challenger sends c to both B and C.

Let m∗1 denotes the output of B, and m∗2 denotes the output of C. A, B, and C win the
game if m∗1 = m and m∗2 = m. We then say that an unclonable encryption scheme has
unclonability if no adversaries can win this game with probability significantly greater
than 1/|M|. That is, if for all triples of QPT adversaries (A,B, C):

Pr


m∗1 = m
∧

m∗2 = m
:

m∗1 ← B(| ∗⟩1 , c),m∗2 ← C(| ∗⟩2 , c)
c← Enc(k,m)
m←$M
| ∗⟩12 ← A(| ⟩)
| ⟩ ← QKeyGen(k)
k← KeyGen(1λ)


≤ 1
|M|

+ negl(λ)

Anti-piracy security (CPA-style). We now define the CPA-style variant of this
definition. Define the following game, parametrized by a security parameter λ, and
between a challenger and a triple of adversaries (A,B, C). During the game, B and C are
not allowed to communicate.

• Setup phase:

− The challenger samples a key k← KeyGen(1λ).

− The challenger prepares | ⟩ ← QKeyGen(k).

4.6. Copy-Protection 85

Challenger
k← KeyGen(1λ)

| ⟩ ← QKeyGen(k)

b←$ {0, 1}

A

| ⟩

m0,m1

B
| ∗⟩1

Enc(k,mb)

b∗1

C| ∗⟩2

Enc(k,mb)

b∗2

Winning Condition:
b∗

1 = b

∧
b∗

2 = b

Figure 4.14: Anti-piracy security (CPA-style) of a single-decryptor scheme. This property states
that no efficient adversaries must be able to win this game with probability significantly greater
than 1/2.

− The challenger sends | ⟩ to A.

• Splitting phase:

− A prepares a bipartite state | ∗⟩12.

− A sends | ∗⟩1 to B, and | ∗⟩2 to C.

− A sends a pair of messages (m0,m1) to the challenger.

• Challenge phase:

− The challenger samples a bit b←$ {0, 1}.

− The challenger computes c← Enc(k,mb).

− The challenger sends c to both B and C.

Let b∗1 denotes the output of B, and b∗2 denotes the output of C. A, B, and C win the game
if b∗1 = b and b∗2 = b. We then say that an unclonable encryption scheme has unclonability
if no adversaries can win this game with probability significantly greater than 1/2. That
is, if for all triple of QPT adversaries (A,B, C):

Pr


b∗1 = b
∧

b∗2 = b
:

b∗1 ← B(| ∗⟩1 , c), b∗2 ← C(| ∗⟩2 , c)
c← Enc(k,mb)
b←$ {0, 1}
(| ∗⟩12 , (m0,m1))← A(| ⟩)
| ⟩ ← QKeyGen(k)
k← KeyGen(1λ)


≤ 1

2 + negl(λ)

We provide an illustration of this anti-piracy property in Figure 4.14.

86 Chapter 4. Unclonable Cryptography

Remark 3. In the definition above, Bob and Charlie receive the same message. Remark
that we can also define anti-piracy, with respect to a first distribution over pairs of messages
to be encrypted, and to a second one over pairs of random bitstrings to be used as the
randomness in the encryption algorithm. Such a more involved definition will be crucial in
the next chapter (Chapter 5), when we investigate the links between single-decryptors and
copy-protection.

Constructions

Georgiou and Zhandry (2020) showed how to turn an unclonable encryption scheme with
unclonable-indistinguishability into a single-decryptor. As we do not know any unclonable
encryption construction satisfying unclonable-indistinguishability, this transform unfor-
tunately does not provide a construction for single-decryptor. However, we remark that,
if the underlying unclonable encryption scheme has the simpler unclonability property,
then this transform yields a single-decryptor with the regular anti-piracy security. This
immediately yields such a single-decryptor scheme, using the unclonable encryption of
Broadbent and Lord (2020) as the underlying scheme. We describe below the general
transform of Georgiou and Zhandry (2020), and then the single-decryptor scheme resulting
of this transform, applied to the Broadbent and Lord (2020) scheme.

The secret key of a single-decryptor scheme obtained using this transform, is made
of a key from the underlying unclonable encryption scheme, as well as an n-long random
bitstring (we set the message space M = {0, 1}n). A quantum decryption key is then the
quantum encryption of this random string. Encrypting a message consists in returning the
unclonable encryption’s key (not the random string), and the message one-time padded
with the string. Finally, the decryption of such a ciphertext is done by decrypting the
quantum encryption, yielding the random string, and using this string to uncompute the
one-time pad and recover the message.

Construction 12: Single-Decryptor From Unclonable Encryption
Let n = poly(λ). Let UE.⟨KeyGen,Enc,Dec⟩ be an unclonable encryption scheme, with
message space M = {0, 1}n.

KeyGen(1λ) :

− Sample k← UE.KeyGen(1λ), and r ←$ {0, 1}n.

− Return (k, r).

QKeyGen((k, r)) :

− Prepare | ⟩ ← UE.Enc(k, r).

− Return | ⟩.

Enc((k, r),m) :

− Compute c = m⊕ r.

− Return (k, c).

Dec(| ⟩ , (k, c)) :

4.6. Copy-Protection 87

− Compute r = UE.Dec(k, | ⟩).

− Return c⊕ r.

Anti-piracy security. The anti-piracy security follows directly from the unclonability
of the underlying unclonable encryption scheme. Consider a triple of efficient adversaries
Alice, Bob, and Charlie, who win the anti-piracy game for this single-decryptor with
probability p. We construct another triple of efficient adversaries, Alex, Billy, and Clover,
who win the unclonability game of the underlying unclonable encryption scheme with
the same probability, which contradicts the unclonability property, and thus prove the
anti-piracy one.

Alex, given a random quantum ciphertext (encrypting a message m), runs Alice on
it to get a bipartite quantum state, that she shares among Billy and Clover. She also
samples a random n-long bitstring c, and sends it to both Billy and Clover. Billy receives
a key k, then runs Bob on his share of the bipartite state, the key, and this random string
c. Note that there is a string m′ such that c = m⊕m′. With this notation, Bob’s input
corresponds to the single-decryptor’s encryption of the message m′. He then returns m′
with non-negligible probability, and Billy returns c⊕m′. This analysis can actually be
done for Billy and Clover simultaneously, yielding a correct answer for both of them with
non-negligible probability, and finishing the reduction.

The proof of anti-piracy security (CPA-style) follows the same pattern.

Construction 13: Transform Applied To Broadbent and Lord’s Construction
Let n = poly(λ).

KeyGen(1λ) :

− Sample an n-long BB84 state description, that is r ←$ {0, 1}n,
and θ ←$ {0, 1}n such that |θ| = n/2.

− Sample r′ ←$ {0, 1}n.

− Return (r, θ, r′).

QKeyGen(r, θ, r′) :

− Compute x = r ⊕ r′.

− Return |xθ⟩.

Enc((r, θ, r′),m) :

− Compute c = m⊕ r′.

− Return (r, θ, c).

Dec(| ⟩ , (r, θ, c)) :

− Measure | ⟩ in basis θ; let x denote the outcome.

− Return c⊕ x⊕ r.

Chapter

5
Towards Unclonable
Cryptography in the Plain
Model

In this chapter, we present our copy-protection of point functions and unclonable
encryption constructions in the plain model. We also present independent results on
tokenized signature schemes. This chapter is based on our following work: Chevalier,
Hermouet, and Vu (2024b). We provide some supplementary materials for this chapter in
Appendix A.

Chapter content
5.1 Introduction . 90
5.2 Copy-Protection: From Pseudorandom Functions to Point

Functions . 91
5.2.1 Copy-Protection of Point Functions 91
5.2.2 Copy-Protection of Pseudorandom Functions 93
5.2.3 Construction . 94

5.3 Unclonable Encryption . 97
5.3.1 Unclonable Encryption . 97
5.3.2 Construction . 97

5.4 Locking a Message with Coset States — A Single-Decryptor
Construction . 99

5.4.1 Compute-And-Compare Programs and Obfuscation 100
5.4.2 Coset States . 101
5.4.3 Locking A Message with Coset States 102
5.4.4 Single-Decryptor . 103
5.4.5 Construction . 104
5.4.6 On the Need for a New Monogamy-Of-Entanglement Property 106
5.4.7 Issues with Simultaneous Extraction 107

5.5 A Copy-Protection Scheme of Pseudorandom Functions in
the Plain Model . 108

5.5.1 High-Level Description . 109
5.5.2 Construction . 110

5.6 Monogamy-Of-Entanglement Game with Identical Basis . . . 113

90 Chapter 5. Towards Unclonable Cryptography in the Plain Model

5.6.1 Proof of Upper-Bound . 115
5.6.2 Computational Parallelized Version 117

5.7 Conjectures on Simultaneous Compute-and-Compare Obfus-
cation . 118

5.7.1 Original Compute-And-Compare Obfuscation 118
5.7.2 Non-Local Context . 118
5.7.3 Conjectures . 119
5.7.4 Related Work . 120

5.8 Tokenized Signature in the Plain Model 121
5.8.1 Tokenized Signatures . 121
5.8.2 Definition . 122
5.8.3 Construction . 124
5.8.4 Direct Product Hardness with Identical Basis 124

5.1 Introduction
Copy-protection of point functions has been constructed related to different oracles. The
first construction we have is from Aaronson (2009) and was related to a quantum oracle.
More than a decade later, Coladangelo, Majenz, and Poremba (2024) presented a concrete
construction relying “only” on the quantum random oracle model. Finally, Ananth,
Kaleoglu, Li, Liu, and Zhandry (2022) and Ananth, Kaleoglu, and Liu (2023) improved
this result, presenting a construction with a standard security, still in the quantum random
oracle model.

This quantum oracle model assumes the existence of a powerful random oracle, with
arbitrary input and output spaces, that can be queried by anyone in a protocol. In
particular, all the protocol’s algorithms, and adversaries in the security definitions, can
query it on any input, and even on superposition of classical inputs. This model turns
out to be extremely useful, as it provides a real (or statistical) source of randomness, as
opposed to the pseudorandomness commonly used in cryptography. While such an oracle
provably cannot be implemented, it is still considered as a good heuristic regarding whether
a protocol would be secure if we replace the oracle by a good cryptographic randomness
generator, typically a hash function. However, again, quantum random oracles do not
exist in real life, and therefore it is preferable to not use them (or any other oracles) at
all, that is to define constructions in the so-called plain model. For this reason, in this
chapter, we try to construct copy-protection of point functions in the plain model. This
task has remained elusive for a long time, and is actually not completely solved at the
time of writing this thesis. We therefore present our ideas to construct such a scheme, the
resulting construction, and the bottlenecks: the ones we overcame, and the ones that still
remain to be overcome.

The content of this chapter is based on two papers (Chevalier, Hermouet, and Vu
(2023) and Chevalier, Hermouet, and Vu (2024b)). This chapter is articulated as follows.
We first present in Sections 5.2 and 5.3 our constructions of copy-protection of point
functions, and unclonable encryption, based on copy-protection of pseudorandom functions.
Then, in Sections 5.4 and 5.5, we present new security definitions for copy-protection of

5.2. Copy-Protection: From Pseudorandom Functions to Point Functions
91

pseudorandom functions and single-decryptor, and show that an existing copy-protection
scheme of pseudorandom functions — presented by Coladangelo, Liu, Liu, and Zhandry
(2021) — satisfies this new security if the single-decryptor presented in the same paper
satisfies the new single-decryptor security property. We turn to the security of this
single-decryptor construction, and discuss the two main challenges in proving this new
property. We finally show how to overcome the first challenge (Section 5.6), and formalize
a conjecture that, if true, overcomes the second one (Section 5.7). As related contributions,
we present in Section 5.8 two additional results on tokenized signature schemes: we define
two new security properties of such schemes, and present a construction that satisfies
them.

5.2 Copy-Protection: From Pseudorandom Functions
to Point Functions

As our copy-protection of point functions is obtained from a copy-protection of pseudoran-
dom random function in a black-box way, we start by briefly recalling the definition of
these two unclonable primitives. We refer the reader to Section 4.6.1 and Appendix A.1
for more detailed definitions.

5.2.1 Copy-Protection of Point Functions
A copy-protection of point functions transforms a point function PFy — defined by
PFy(x) = 0 for all x ̸= y and PFy(y) = 1 — described by its point y, into a quantum state
| y⟩ through a protection algorithm Protect. It also provides an evaluation procedure Eval,
to evaluate such a quantum encoding on any input x, to obtain PFy(x), almost without
perturbing the encoding, so that the evaluation can be performed a polynomial number of
times.

Anti-piracy security. The anti-piracy security of a copy-protection of point functions
scheme states that no efficient triple of adversaries Alice, Bob, and Charlie, can win the
following game (illustrated in Figure 5.1) with a “good enough” probability, that we
elaborate on below. In this game, a challenger sends a copy-protection | y⟩ of a random
point function PFy to Alice, who splits it, and shares the two halves between Bob and
Charlie. The latter each receive a challenge input from the challenger, and must both
return the correct evaluation of the function on this input in order to win the game.

Challenge distributions. Importantly, these challenges inputs are sampled from a
specific challenge distribution — a parameter in the game. In this chapter, we consider
three different challenge distributions:

• the product distribution, that either yields the point y to Bob, or another random
input, and independently samples a challenge input for Charlie in the same way;

• the identical distribution, similar the product one, except that Bob and Charlie
receive the same challenge;

• the non-colliding distribution, also similar to the product one, except that Bob and
Charlie cannot both receive the point y, that is, they either both receive a random

92 Chapter 5. Towards Unclonable Cryptography in the Plain Model

Challenger
y ←$ {0, 1}n

| ⟩ ←$ Protect(1λ, y)

(x1, x2)←$ Dy

A
| y⟩

B
|ψ∗⟩1

x1

z∗1

C|ψ∗⟩2

x2

z∗2

Winning Condition:
z∗

1 = PFy(x1)
∧

z∗
2 = PFy(x2)

Figure 5.1: Anti-piracy security of a copy-protection scheme of point functions, with respect to a
challenge distribution D. This property states that no triple of efficient adversaries must win this
game with probability significantly greater than 1/2 if D is the product or identical distribution,
or 2/3 if it is the non-colliding distribution.

Dprody Didy Dncy
(y, y) (y, y)
(y, x) (y, x)
(x, y) (x, y)
(x, x′) (x, x) (x, x′)

Figure 5.2: Product, identical, and non-colliding challenge distributions parametrized by a
point y ∈ {0, 1}n for some positive integer n. Each column represents one challenge distribution.
Sampling from one of these distribution consists in sampling x and x′ uniformly and independently
at random from {0, 1}n, then picking one non-empty cell at random in the column corresponding
to the chosen distribution, and finally yielding the cell.

independent input, or one receives y and the other receives a random input, each
case happening with probability 1/3.

These distributions define the maximum value for the aforementioned “good enough”
probability. This probability, that we call trivial probability, is thus the one given by the
following trivial strategy: Alice forwards the quantum encoding to Bob, who uses it to
answer the challenge, while Charlie receives nothing and answers with the most probable
output. This definition sets the trivial probability to 1/2 for the product and identical
distributions, and 2/3 for the non-colliding one. We summarize these distributions in
the table of Figure 5.2. In the rest of this section, and when clear from the context,
we sometimes abuse the notation and simply write product distribution to denote the
family of product distributions {Dprody }y. We do the same for identical and non-colliding
distributions.

5.2. Copy-Protection: From Pseudorandom Functions to Point Functions
93

5.2.2 Copy-Protection of Pseudorandom Functions
In this subsection, we give a high-level definition of copy-protection of pseudorandom
functions. We refer the reader to Appendix A.1 for a more complete definition.

Pseudorandom functions. We start by briefly recalling different properties of pseu-
dorandom functions. Recall first that a family of pseudorandom functions {PRFk}k∈K,
where every PRFk has domain X and codomain Z, is such that no efficient adversary can
distinguish the behavior of a function from the one of a truly random function. More
precisely, such an adversary is given oracle access to either a random pseudorandom
function, or a truly random oracle with the same domain and codomain, must not be able
to guess what function they were given better than a random guess.1∣∣∣Prf :X→Z

[
AO(f)(1λ) = 1

]
− Prk←$K

[
AO(PRFk(·)(1λ) = 1

]∣∣∣ ≤ negl(λ)
We say that a pseudorandom functions family is injective if almost all PRFk are injective.
A pseudorandom functions family can also be puncturing, in which case there exists a
puncturing procedure that takes a key k, and a point x, and returns a “punctured key”
k{x}. This punctured key can then be used in an evaluation procedure to compute PRFk
on any input x′ ̸= x. Furthermore, when the evaluation procedure is used on the punctured
point, it returns a uniformly random bitstring. The security of a puncturing pseudorandom
functions family states that, given a punctured key k{x}, and its corresponding punctured
point x, it is computationally hard to distinguish PRFk(x) from a random bitstring of
same size.

{k{x}, x,PRFk(x)}k←$K ≈c {k{x}, x, z}z←$Z
k←$K

for all x ∈ X

Finally, a pseudorandom functions family is said to be extracting if, even given the key,
the image of a random input looks like random.

{k,PRFk(x)}x←$X
k←$K

≈ {k, z}z←$Z
k←$K

Remark that an extracting pseudorandom functions family is more generally defined with
respect to some min-entropy quantity, and the equation above remains valid as long as
the punctured point x is sampled from a distribution with at least this min-entropy.

Copy-protection of pseudorandom functions. A copy-protection scheme of pseudo-
random functions is defined according to the general template presented in Section 4.6.
More precisely, such a scheme is composed of a protection procedure, that produces
quantum encoding | ⟩ of a pseudorandom functions family given its description (its key),
and an evaluation algorithm that allows to evaluate a pseudorandom function on any input
given its quantum encoding. The security asks that no adversaries Alice, Bob, and Charlie
can win the following game with some non-negligible advantage over the trivial probability.
Alice is given the quantum encoding of a random pseudorandom function, splits it, and
sends the first and second halves to Bob and Charlie respectively. The latter are given a
random input in the domain of the protected pseudorandom function, and have to guess
the correct image. Note that, when the pseudorandom functions’ codomain is large enough,
the trivial probability in this game is negligible in the security parameter. We provide a
formal definition of copy-protection of pseudorandom functions in Appendix A.1.

1Remark that pseudorandom functions families usually come with a key generation procedure that
samples a random key. In particular, the underlying distribution is not necessarily uniform over K. We
abuse the notation and simply write k←$ K to denote this sampling procedure.

94 Chapter 5. Towards Unclonable Cryptography in the Plain Model

Indistinguishability anti-piracy security. Coladangelo, Liu, Liu, and Zhandry (2021)
gave the first definition for copy-protection of pseudorandom functions, and, together with
the regular anti-piracy security property defined above, they proposed a second property.
This property is defined through a similar game, but instead of having to guess a random
input’s image, Bob and Charlie must distinguish between a “good” pair (x,PRFk(x)), and
a “bad” one (x, z) where z is sampled uniformly at random from the codomain. Note that
the challenge pair given to Bob, and the one given to Charlie, are generated independently.
As expected, the property asks that no adversaries must win this game with probability
greater than random guessing. This property aims to capture the idea that, not only it
should be impossible to split a protection of a pseudorandom function in two halves that
both can evaluate the function correctly, but also that both these two halves cannot break
the pseudorandomness of the function.

Reversed anti-piracy security. The copy-protection of pseudorandom functions that
we need in our construction of copy-protection of point functions must satisfy a slightly
different property, that we call reversed anti-piracy security. To understand the name,
recall that in the indistinguishability anti-piracy security, Bob and Charlie are both asked
to distinguish a good pair (x,PRFk(x)) from a bad pair (x, z). We make the following
three changes to this game:

• First, we change the definition of a bad pair: from a pair (x, z), it becomes
(x′,PRFk(x)), for two independent inputs x and x′.

• Second, we make the game easier by giving the image part of the pairs to Alice. Bob
and Charlie then only receive the preimage part x.

• Third, instead of having two independent challenge pairs — one for Bob, and one
for Charlie — we ask the image part to be the same for both, and only the preimage
part to be possibly different (subject to the challenge distribution we consider, as we
explain below).

Finally, the reversed anti-piracy game (formally defined in Appendix A.1, and illustrated
in Figure 5.4) is the following. Alice is given the protection of a random pseudorandom
function, and the image of a random input PRFk(x). She splits the state, and sends the
two halves to Bob and Charlie, who are then respectively given x1 and x2 — sampled
from a challenge distribution — as challenges and must guess whether the challenge is x
or not. We consider the same challenge distributions as for the copy-protection of point
functions game, described in Figure 5.3.

5.2.3 Construction
We are now ready to present our construction for copy-protection of point functions in the
plain model. Our idea is the following. Given a copy-protection scheme of pseudorandom
functions {PRFk}k∈K with domain {0, 1}n, a protection of a point y (an n-long bitstring)
consists in a pair

(
| k⟩ , z = PRFk(y)

)
for a random key k. Evaluating such a pair on a point

x then consists in computing the image of x under the pseudorandom function, using its
quantum encoding, and then returning 0 or 1 depending on whether the outcome is z or not.
Intuitively, being able to successfully split this quantum program to win in the anti-piracy
game requires to be able to produce two quantum states that both can evaluate PRFk,

5.2. Copy-Protection: From Pseudorandom Functions to Point Functions
95

Dprodx Didx Dncx
(x, x) (x, x)
(x, x′) (x, x′)
(x′, x) (x′, x)
(x′, x′′) (x′, x′) (x′, x′′)

Figure 5.3: Product, identical, and non-colliding challenge distributions parametrized by a pseu-
dorandom random function’s input x ∈ X . Each column represents one challenge distribution.
Sampling from one of these distributions consists in sampling x′ and x′′ uniformly and indepen-
dently at random from X , then picking one non-empty cell at random in the column corresponding
to the chosen distribution, and finally yielding the cell.

Challenger
k←$ K

| k⟩ ← Protect(k)

x←$ X

(x1, x2)←$ Dx

A
| k⟩

PRFk(x)

B
|ψ∗⟩1

x1

b∗1

C|ψ∗⟩2

x2

b∗2

Winning Condition:
b∗

1 = b1

∧
b∗

2 = b2

Figure 5.4: Reversed anti-piracy security of a copy-protection scheme of pseudorandom functions,
with respect to a challenge distribution D. b1 indicates whether x1 = x or not, and similarly for
b2. This property states that no triple of efficient adversaries must win this game with probability
significantly greater than 1/2 if D is the product or identical distribution, or 2/3 if it is the
non-colliding distribution.

96 Chapter 5. Towards Unclonable Cryptography in the Plain Model

hence breaking the anti-piracy game of the copy-protection of pseudorandom functions. We
provide below more intuition on the requirements for correctness and anti-piracy security
of this transform.

Construction 14: Copy-Protection of Point Functions
Let {PRFk}k∈K be a family of pseudorandom functions for some key space K, and let
PRF.⟨Protect,Eval⟩ be a copy-protection scheme for this family.

Protect(1λ, y) :

− Sample k←$ K.

− Prepare | k⟩ ← PRF.Protect(k).

− Return
(
| k⟩ ,PRFk(y)

)
.

Eval((| k⟩ , z), x) :

− Compute z′ ← PRF.Eval(| k⟩ , x).

− Return 1 if z′ = z, otherwise return 0.

Correctness. Recall that correctness requires first that the evaluation on y of the
protection of y returns 1 for all y, and then that the evaluation of x on the protection of y
returns 0 for all y and x ̸= y. Evaluating the protection of y on y returns 1 almost with
certainty from the correctness of the underlying copy-protection scheme of pseudorandom
functions, so the first point is satisfied. On the other hand, evaluating the protection of y
on x ̸= y, would return 1 if PRFk(x) = PRFk(y). This means that the scheme does not
have correctness if this happens with a non-negligible probability, when averaged over
k, for a pair (x, y). However, provided that the pseudorandom functions’ codomain is
sufficiently large (more precisely it must be superpolynomial in the security parameter),
this cannot happen. Indeed, if it were the case, an adversary given oracle access to either
a pseudorandom function or a truly random function, and querying the oracle on x and
y, would notice a significant difference depending on whether the oracle implements a
pseudorandom function (in which case the outcome would be the same with non-negligible
probability) or a truly random one (in which case the outcome is almost surely different).
Such an adversary would then be able to break the security of the pseudorandom functions.

Theorem 11 (Correctness of Construction 14). Assume the underlying copy-protection
scheme of pseudorandom functions has correctness, and the size of the pseudorandom func-
tions’ codomain is superpolynomial in the security parameter. Then the copy-protection
scheme of point functions defined in construction 14 has correctness.

Anti-piracy security. The anti-piracy security of our construction with respect to a
challenge distribution is immediate if the underlying copy-protection of pseudorandom
functions has reversed anti-piracy security with respect to this distribution. Indeed, the
anti-piracy security game of this construction, with respect to a challenge distribution, is
exactly the reversed anti-piracy game of the underlying copy-protection of pseudorandom
functions, with respect to the same distribution.

5.3. Unclonable Encryption 97

Theorem 12 (Anti-Piracy of Construction 14). Let D be a family of either product,
identical, or non-colliding challenge distributions. Assume the underlying copy-protection
scheme of pseudorandom functions has indistinguishability anti-piracy security with respect
to D. Then the copy-protection scheme of point functions defined in construction 14 has
anti-piracy security with respect to D.

5.3 Unclonable Encryption
In this section, we present our construction of unclonable encryption. This construction uses
a copy-protection scheme of pseudorandom functions as a subroutine, and has unclonable-
indistinguishability if the underlying copy-protection scheme has reversed anti-piracy
security with respect to the identical distribution. We give below an informal presentation
of unclonable encryption and its properties, then we present our construction and discuss
its correctness and security.

5.3.1 Unclonable Encryption
An unclonable encryption scheme can be seen as a regular private encryption scheme,
with a key generation procedure KeyGen, where the encryption procedure Enc produces
quantum unclonable ciphertexts of classical messages, that can then be decrypted using
the corresponding classical key, through the decryption procedure Dec. We present
below private-key unclonable encryption for single-bit messages, but this primitive can
be naturally extended to multi-bits messages, and also exists in a public-key version. We
refer the reader to Section 4.4 for more details on this primitive.

Indistinguishability. An unclonable scheme has indistinguishability if no efficient
adversary can distinguish the encryption of 1 from the encryption of 0. Many-time indis-
tinguishability is defined similarly, except that the adversary is given as many ciphertexts
as they want, each encrypting the same message (0 or 1), and must tell which message is
encrypted. As mentioned in Section 4.4.3, it is possible to transform a one-time secure
unclonable encryption scheme into a many-time secure one, simply by using a classical
private encryption scheme, with many-time indistinguishability.

Unclonable-indistinguishability. The unclonable-indistinguishability property is de-
fined through a “cloning game” (illustrated in Figure 5.5), similarly to copy-protection
anti-piracy property. An adversary Alice is given a quantum ciphertext of one of two
messages (0 or 1), splits it and shares it between two other adversaries Bob and Charlie.
The latter are then given the key, and must both guess which message was encrypted in
order to win the game. The unclonable-indistinguishability states that no adversaries can
win this game with probability greater than 1/2.

5.3.2 Construction
The idea of our construction is the following. A key kue in this scheme is simply a random
pseudorandom functions’ input. The encryption of a bit m consists in first protecting a
random pseudorandom function PRFkprf

, then returning this protection, and either the
image of the key kue under this pseudorandom function if m = 1, or a random string of

98 Chapter 5. Towards Unclonable Cryptography in the Plain Model

Challenger
k← KeyGen(1λ)

m←$ {0, 1}

| ⟩ ← Enc(k,m)

A| ⟩

B
| ∗⟩1

k

m∗1

C| ∗⟩2

k

m∗2

Winning Condition:
m∗

1 = m

∧
m∗

2 = m

Figure 5.5: Unclonable-indistinguishability of an unclonable encryption scheme for single-bit
messages. This property states that no efficient adversaries A, B, C, can win this game with
probability greater than 1/2.

the size of the pseudorandom functions’ images if m = 0. Then, in order to decrypt such a
ciphertext given a key kue: simply evaluate the pseudorandom function on kue using the
quantum protection part of the ciphertext, and checks whether the outcome is equal to
the second part of the ciphertext (in this case return 1) or not (in this case return 0).

Construction 15: Unclonable Encryption From Copy-Protection of Pseudo-
random Functions

Let {PRFk}k∈K be a family of pseudorandom functions for some key space K, domain
{0, 1}nX , and codomain {0, 1}nZ . Let PRF.⟨Protect,Eval⟩ be a copy-protection scheme
for this family.

KeyGen(1λ) :

− Sample kue ←$ {0, 1}n.

− Return kue.

Enc(kue,m) :

− Sample kprf ←$ K.

− Prepare | ⟩ ← PRF.Protect(kprf).

− If m = 1, let z = PRF(kprf , kue); otherwise, sample z ←$ {0, 1}nZ .

− Return (| ⟩ , z)

Dec(kue, (| ⟩ , z)) :

− Compute z′ ← PRF.Eval(| ⟩ , kue).

− Return 1 if z′ = z, otherwise return 0.

5.4. Locking a Message with Coset States — A Single-Decryptor Construction
99

Correctness. The correctness of this scheme is immediate from the correctness of
the underlying copy-protection scheme of pseudorandom functions, provided that the
pseudorandom functions’ codomain is large enough. Indeed, the probability of decrypting
wrongly the message m = 1 is the probability of the evaluation of a protected pseudorandom
function being incorrect, that is negligible if the underlying copy-protection scheme has
correctness. Furthermore, the probability of decrypting wrongly the message m = 0 is
the probability that two independent random nZ-long bitstrings are equal, that is also
negligible if nZ is large enough.

Theorem 13 (Correctness of Construction 15). Assume the underlying copy-protection
scheme of pseudorandom functions has correctness, and the size of the pseudorandom
functions’ codomain is superpolynomial in the security parameter. Then the unclonable
encryption scheme defined in construction 15 has correctness.

Unclonable-indistinguishability. This scheme has unclonable indistinguishability if
the underlying pseudorandom functions family is extracting, and if it has reversed anti-
piracy security with respect to the identical distribution. To see that, remark that in the
unclonable-indistinguishability game applied to this scheme, Alice receives (| ⟩ , z) where
z is either PRFkprf

(kue) or a random string. The extracting property of the pseudorandom
functions allows us to unnoticeably replace this random string by the pseudorandom
function evaluation of a random string k′ue. Doing this, the second part of the encryption
that Alice receives is either the image of kue or of k′ue under the pseudorandom function,
and Bob and Charlie both receive kue. This is in fact, up to relabelling, equivalent to Alice
receiving the image of kue as the second part of the ciphertext, and Bob and Charlie both
receiving either kue, or k′ue. This last case exactly corresponds to the indistinguishability
anti-piracy game of the underlying copy-protection scheme, with respect to the identical
distribution. The security thus follows directly.

Theorem 14 (Unclonable-Indistinguishability of Construction 15). Assume the underlying
copy-protection scheme of pseudorandom functions has reversed anti-piracy security with
respect to the identical distribution. Then the unclonable encryption scheme defined in
construction 15 has unclonable-indistinguishability.

5.4 Locking a Message with Coset States — A Single-
Decryptor Construction

Now that we have presented our constructions of copy-protection of point functions and
unclonable encryption, we need to find a copy-protection scheme of pseudorandom functions,
with appropriate security. We use the only copy-protection scheme of pseudorandom
functions in the literature, namely the one presented by Coladangelo, Liu, Liu, and
Zhandry (2021). As the main argument regarding unclonability of this scheme is the
same as the one regarding unclonability of a single-decryptor construction from the same
paper, we present the single-decryptor first, and we present the copy-protection scheme in
the next section. Before entering the details regarding single-decryptors, we give some
intuition on this unclonability property, and see how to lock a message in a program, such
that it can be unlocked only with the appropriate quantum key. We show how to leverage
unclonable properties of coset states, as well as different sorts of obfuscation to achieve
this purpose.

100 Chapter 5. Towards Unclonable Cryptography in the Plain Model

5.4.1 Compute-And-Compare Programs and Obfuscation

We first present the notions of compute-and-compare programs, the associated compute-
and-compare obfuscation, and the notion of indistinguishable obfuscation. Note that we
only give a high-level overview of these notions, we refer the reader to Section 3.3.6 for
formal definitions.

A compute-and-compare program is parametrized by a function, a “lock-value”, and a
secret. On input an element in the function domain, the compute-and-compare program
returns the secret if and only if the image of this element under the function is equal to
the secret. Otherwise, it returns an error symbol.

CC[f, ℓ,m](x) =
{
m if f(x) = ℓ,
⊥ otherwise .

Consider a distribution D over pairs of the form (CC[f, ℓ, s], aux) where aux is some
(possibly quantum) auxiliary information on the program. Under the right conditions, the
programs of this distribution’s support can be obfuscated, in such a way that, even given
its associated auxiliary information, an obfuscated program cannot be distinguished from
a simulated program that returns the error symbol on every input. This obfuscation is
called compute-and-compare obfuscation, and the corresponding obfuscation procedure is
noted CC-Obf. We often use the shorthand C̃C[f, ℓ, s] to denote the compute-and-compare
obfuscation of the program CC[f, ℓ, s].

{CC-Obf(CC[f, ℓ, s]), aux}D ≈c
{
Sim(1λ), aux

}
D

As mentioned, compute-and-compare obfuscation exists under the right conditions. More
precisely, it exists when the aforementioned distribution is unpredictable. That is when,
averaged over the distribution, no efficient adversary can guess the lock-value of a program
given the program’s function, and the associated auxiliary information.

Pr[A(f, aux) = ℓ : (CC[f, ℓ,m], aux)←$ D] ≤ negl(λ)

Indistinguishable obfuscation. Indistinguishable obfuscation, also known as best
possible obfuscation, is another sort of obfuscation that states that the obfuscation of a
circuit C0 is indistinguishable from the obfuscation of any functionally equivalent circuit
C1 — that is, such that C0(x) = C1(x) for any x. The corresponding obfuscation procedure
is noted iO, and we often use the shorthand Ĉ to denote the indistinguishable obfuscated
program C. We also sometimes write that a program obfuscated using indistinguishable
obfuscation is iO-obfuscated.

iO(C0) ≈c iO(C1) for all functionally equivalent C0,C1.

As, when applicable, compute-and-compare obfuscation preserves the functionality of
the program it obfuscates, the definition above tells us that applying indistinguishable
obfuscation on a compute-and-compare program obfuscates it at least as well as a compute-
and-compare obfuscation would. This corollary turns out to be handy when using coset
states to lock a message in a program.

5.4. Locking a Message with Coset States — A Single-Decryptor Construction
101

5.4.2 Coset States
We recall below important properties of coset states. We refer the reader to Section 4.2
for a more formal presentation.

Given a subspace A of Fn2 , and two vectors s and s′ in Fn2 , the coset state |As,s′⟩ is the
superposition of all vectors of A + s — the regular coset — and applying a Hadamard
gate on it results in its dual coset state |A⊥s′,s⟩, a superposition of all vectors in A⊥ + s′ —
the dual coset.

|As,s′⟩ = 1√
|A|

∑
a∈A

(−1)a·s′ |a+ s⟩

These states have been introduces by Coladangelo, Liu, Liu, and Zhandry (2021), and
satisfy two main properties2:
• (direct product hardness) no efficient adversary can extract a vector in the regular

coset, and one in the dual coset from a coset state, even given access to an obfuscated
membership program to these regular and dual cosets.

• (monogamy-of-entanglement) there is no way of splitting a coset state in two states
such that an efficient adversary can extract a vector in the regular coset given the
first state and a description of the subspace, and another efficient adversary can
extract a vector in the dual coset given the second state and a description of the
subspace. Similarly to direct product hardness, this task remains hard even when
the adversaries are given obfuscated membership programs.

Membership programs. The aforementioned membership programs are defined as
follows. Each coset state description (A, s, s′) is associated to two membership programs
PA+s and PA⊥+s′ for the regular and dual cosets respectively. A membership program is
parametrized by a coset description and, on input a vector, returns 1 if the vector belongs
to the coset, and 0 otherwise. Coladangelo, Liu, Liu, and Zhandry (2021) showed that
using indistinguishable obfuscation on these programs, and giving them to the adversaries
in the direct product hardness, and monogamy-of-entanglement properties, is enough to
preserve the hardness of the underlying tasks of these properties.

PA+s(u) =
{

1 if u ∈ A+ s
0 otherwise. PA⊥+s′(u) =

{
1 if u ∈ A⊥ + s′

0 otherwise.

Canonical representation. It will be useful in the rest of this section to have a
canonical way to represent a coset. As canonical representative of a coset A+ s, we use the
lexicographically smallest vector in A+ s. We define CanA as the function, parametrized
by a subspace A, that on input a vector u, returns the canonical representative of the coset
A+ u. Importantly, for any coset A+ s and vector u, CanA(u) = CanA(s) if and only if u
belongs to A+ s. This gives us an explicit way of checking membership in a coset A+ s:
on input a vector u, check whether CanA(u) = CanA(s) and return 1 or 0 accordingly. 3

As mentioned above, the adversaries in the direct product hardness and monogamy-of-
entanglement can be given an iO-obfuscated program that checks membership in the
regular and dual cosets, without changing the hardness of the task.

2The monogamy-of-entanglement property has been conjectured by Coladangelo, Liu, Liu, and Zhandry
(2021), and proven later by Culf and Vidick (2022).

3Remark that given a description of A, the function CanA can be implemented efficiently.

102 Chapter 5. Towards Unclonable Cryptography in the Plain Model

5.4.3 Locking A Message with Coset States
We are now ready to present how to lock a message in a program with coset states.
Consider a program Qm,r with a pair of membership programs — corresponding to a
random coset state — hardwired. The program has also a random bit r, and the message
m to be locked, hardwired. On input a vector u, if r = 0, the program checks whether u is
in the regular coset using the corresponding membership program. If r = 1, the program
does the check with the dual coset. In any case, of the check passes, the program returns
the message, otherwise it returns an error symbol.

A simple first idea. The idea is then to publish an iO-obfuscation of this program
Q̂m,r, and its random coin r. It is then easy to see that, given this program and coin,
and the corresponding coset state, one can recover the message with probability 1. To
do that, apply a Hadamard gate to the coset state if r = 1, otherwise leave the state
unchanged. It remains to run the program in superposition over the resulting state to get
the message. Indeed, when r = 0, the state is a superposition of vectors in the regular
coset, which all pass the test. When r = 1, the application of the Hadamard gate results
in a superposition over vectors in a dual coset, which also all pass the test. On the other
hand, given only the program and its coin, it is hard to extract the message, as we will
see later on. We are actually more interested in a situation in between these two cases,
where some party Bob is given a program Q̂m,r, its coin r, and some quantum information
aux on the coset state description. Remark that the program Qm,r is in fact functionally
equivalent to the compute-and-compare program CC[CanA,CanA(s),m] if r = 0, or to
CC[CanA⊥ ,CanA⊥(s),m] if r = 1. We then know that if compute-and-compare obfuscation
is applicable, Bob does not have more chance to recover m from Qm,r than he has to recover
it from a simulated program that holds no information on m. That is, he is not able to
recover m. Taking the contrapositive, it means that if Bob is able to recover the message,
then there exists an efficient algorithm that extracts the lock-value CanA(s) (or CanA⊥(s′))
from the function CanA and aux. As CanA is defined from the subspace’s description A
only, it means the algorithm extracts the lock-value from A and aux. Remark that this
automatically proves that if Bob has no information on the coset apart from the program,
he cannot recover m, as it would mean he could guess CanA(s) or CanA⊥(s′) from CanA
only, while CanA holds no information on s or s′.

Using more coset states. In summary, we have shown a way to lock a message in a
program with coset states. As the reader might think so far, this is a lot of trouble to
only construct a simple encryption scheme. Actually, this method turns out to be way
more interesting when considering two separated parties, both holding such a (program,
coin) pair, and some (possibly entangled) auxiliary information on the coset states. We
will see in the next subsection how Coladangelo, Liu, Liu, and Zhandry (2021) leveraged
it to construct a single-decryptor. As it turns out to be useful later on, let us first extend
the program Qm,r, by using κ pairs of membership programs — each corresponding to
a random independent coset state — and κ coins. The program, on input κ vectors,
performs κ membership tests similar to the one described above, and returns the message
only if they all pass. Using the same arguments as above, we can argue that if an efficient
adversary Bob who, given some auxiliary information aux, guesses a message locked in
such a program, then there exists an efficient algorithm that extracts the lock-value of this
extended program with non-negligible probability, from the description of the subspaces

5.4. Locking a Message with Coset States — A Single-Decryptor Construction
103

A1, . . . , Aκ, and the auxiliary information aux. That is, a set of κ vectors ℓ1, . . . , ℓκ, where
ℓi = CanAi

(si) if ri = 0, or ℓi = CanA⊥
i

(s′i) if ri = 1.

Program 1: Program Qm,r

Hardwired: Membership programs (P̂Ai+si
, P̂A⊥

i +s′
i
) for all i ∈ J1, κK; message m; random

coins r ∈ {0, 1}κ.
Input: κ vectors u1, . . . , uκ in Fn2 .

For i ∈ {1, . . . , κ} :

− If ri = 0 and P̂Ai+si
(ui) = 0 : return ⊥.

− Else if ri = 1 and P̂A⊥
i +s′

i
(ui) = 0 : return ⊥.

− Else: continue.

Return m.

5.4.4 Single-Decryptor
In this subsection, we present the single-decryptor construction of Coladangelo, Liu, Liu,
and Zhandry (2021). We first define single-decryptors in a high-level, and refer the reader
to Section 4.6.4 for more detailed information on this primitive.

Single-decryptors. A (public) single-decryptor scheme can be seen as a classical encryp-
tion scheme, with quantum decryption keys. As in a classical (public) encryption scheme, a
single-decryptor has a key generation procedure KeyGen sampling pairs of classical private
and public keys. Here however, the private key here is not directly used for decryption,
but rather allows for generating quantum decryption keys, used as input in the decryption
algorithm Dec. The public keys serve for encrypting messages, analogously as in a classical
scheme. The security of such a scheme states that the quantum secret keys must be
unclonable in the sense that no triple of efficient adversaries, Alice, Bob, and Charlie,
can win the following game with probability greater than some trivial probability that
we mention in the next paragraph. Alice first receives a random public key from the
challenger, and then is asked to send them back two messages. The challenger then sends
Alice a quantum decryption key, that she splits and shares between Bob and Charlie. The
latter are then given a challenge consisting in an encryption of one of the two messages
sent by Alice, and they must both guess which message they have received in order to win
the game.

Real-or-random anti-piracy security. In the original anti-piracy game, defined by
Coladangelo, Liu, Liu, and Zhandry (2021), the encrypted messages given to Bob and
Charlie are chosen independently, and encrypted with independent random coins. In
this work, we consider a slightly different game. Alice only sends one message m to
the challenger, and the challenges given to Bob and Charlie are either the encryption of
m, or the encryption of a random message. Furthermore, we parametrize this real-or-
random anti-piracy game by three distributions (described in Figure 5.6), similarly to
copy-protection. With the product distribution, the encrypted messages given to Bob
and Charlie are chosen independently, as well as the coins; with the identical distribution,

104 Chapter 5. Towards Unclonable Cryptography in the Plain Model

Dprod(m,r) Did(m,r) Dnc(m,r)
((m, r), (m, r)) ((m, r), (m, r))
((m, r), (m′, r′)) ((m, r), (m′, r′))
((m′, r′), (m, r)) ((m′, r′), (m, r))

((m′, r′), (m′′, r′′)) ((m′, r′), (m′, r′)) ((m′, r′), (m′′, r′′))

Figure 5.6: Product, identical, and non-colliding challenge distributions used in real-or-random
anti-piracy for single-decryptors, parametrized by a message m ∈M, and a set of random coins
r ∈ {0, 1}R. Each column represents one challenge distribution. Sampling from one of these
distributions consists in sampling (m′, r′) and (m′′, r′′) uniformly and independently at random
from M×{0, 1}R, then picking one non-empty cell at random in the column corresponding to
the chosen distribution, and finally yielding the cell.

Bob and Charlie receive the exact same challenge; and with the non-colliding distribution,
Bob and Charlie cannot both receive the encryption of m. When parametrized with the
non-colliding distribution, the adversaries must not win the game with probability greater
than 2/3, while it is still 1/2 with the two other distributions. We provide a formal
definition of this property in Appendix A.2, and an illustration of the real-or-random
anti-piracy game in Figure 5.7.

5.4.5 Construction
We present below the single-decryptor construction of Coladangelo, Liu, Liu, and Zhandry
(2021). The authors of this paper showed that it satisfies the original anti-piracy security,
and we prove its real-or-random anti-piracy security with respect to the non-colliding
distribution below. Proving this property turns out to be much more difficult when
considering identical and product distributions, and we discuss it deeper in the end of this
section.

Construction 16: Single-Decryptor Scheme [CLLZ21]
Let n, κ = poly(λ).

• KeyGen(1λ) :

− Sample coset states’ descriptions {Ai, si, s′i}i∈J1,κK where each Ai is of dimen-
sion n/2.

− Generate the iO-obfuscated membership programs for each coset
{P̂Ai+si, P̂A⊥

i +s′i}i∈J1,κK.

− Return {Ai, si, s′i}i∈J1,κK as the secret key, and {P̂Ai+si
, P̂A⊥

i +s′i}i∈J1,κK as the
public key.

• QKeyGen({Ai, si, s′i}i∈J1,κK) :

− Prepare | ⟩ =
κ⊗
i=1
|Ai,si,s′

i
⟩.

− Return | ⟩.

5.4. Locking a Message with Coset States — A Single-Decryptor Construction
105

Challenger
(sk, pk)← KeyGen(1λ)

| ⟩ ← QKeyGen(k)

r ←$ {0, 1}R

((m1, r1), (m2, r2))←$ D(m,r)

A

| ⟩ , pk

m

B
|ψ∗⟩1

Enc(pk,m1)

b∗1

C|ψ∗⟩2

Enc(pk,m2)

b∗2

Winning Condition:
b∗

1 = b1

∧
b∗

2 = b2

Figure 5.7: Real-or-random anti-piracy security of a single-decryptor, with respect to a challenge
distribution D. b1 = 0 if m1 = m and 1 otherwise, and b2 is defined analogously with m2.
This property states that no triple of efficient adversaries must win this game with probability
significantly greater than 1/2 if D is the product or identical distribution, or 2/3 if it is the
non-colliding distribution.

• Enc({P̂Ai+si
, P̂A⊥

i +s′i}i∈J1,κK,m) :

− Sample r ←$ {0, 1}R.

− Generate an iO-obfuscated program Q̂m,r of program Qm,r described in pro-
gram 1.

− Return
(
r, Q̂m,r

)
.

• Dec
(

κ⊗
i=1
|Ai,si,s′

i
⟩ ,
(
r, Q̂m,r

))
:

− For all i ∈ J1, κK : if ri = 1, apply H⊗n to |Ai,si,s′
i
⟩.

− Let | ′⟩ be the resulting state, run Q̂m,r coherently on | ′⟩. Let m denotes the
outcome.

− Uncompute the Hadamard gates above.

− Return m.

The correctness of this scheme follows from the same argument as in the previous
subsection.

Real-or-random anti-piracy security. The main idea to prove real-or-random anti-
piracy security is based on the existence of the extractor we also discussed in the previous
subsection. Assume that a triple of adversaries Alice, Bob, and Charlie, win the real-
or-random anti-piracy game with probability greater than the trivial probability. The
ciphertexts given to Bob and Charlie are both composed of a compute-and-compare

106 Chapter 5. Towards Unclonable Cryptography in the Plain Model

program, and they both receive a quantum state from Alice, that we can consider as
auxiliary information on the coset states used in the game. A first thing to note is that,
as compute-and-compare programs are the only objects containing information on the
message, replacing them by simulated programs of the CC-obfuscation — containing no
information on the message — prevents Bob and Charlie to guess their messages. It gives
Bob and Charlie a way to distinguish between a real compute-and-compare program, and
such a simulated program, meaning that they both have access to an efficient extractor
for the lock-value of their respective programs. When the game is with respect to the
non-colliding distribution, then the random coins r1 and r2 used for the encryption of Bob
and Charlie’s challenges are independent. It means that with overwhelming probability,
there will be an index i such that r1,i = 0, and r2,i = 1. Remember that the lock-values
returned by the extractors are the canonical representatives of the cosets. Then, the i-th
lock-value extracted on Bob’s side is the canonical representative of Ai + si, and the one on
Charlie’s side is the representative of A⊥i + s′i. It means that Bob and Charlie have access
to vectors in the regular i-th coset, and in the dual i-th coset respectively. Returning these
vectors allow them to break the monogamy-of-entanglement of coset states, task proven to
be impossible, thus proving the real-or-random anti-piracy security of this construction.

Theorem 15 (Correctness of Construction 16). Assume the existence of post-quantum
indistinguishability obfuscation, one-way functions, compute-and-compare obfuscation
for the class of unpredictable distributions. Then the single-decryptor scheme defined in
construction 16 has correctness.

Theorem 16 (Real-Or-Random Anti-Piracy Security of Construction 16, with Respect to
the Non-Colliding Distribution). Assume the existence of post-quantum indistinguisha-
bility obfuscation, one-way functions, compute-and-compare obfuscation for the class of
unpredictable distributions. Then the single-decryptor scheme defined in construction 16
has anti-piracy security, with respect to the non-colliding distribution.

5.4.6 On the Need for a New Monogamy-Of-Entanglement Prop-
erty

Recall that the security of the single-decryptor of construction 16 is based on the following
argument. If Bob is able to guess correctly the encryption of which message he has
received, then he can extract the lock-value of the encryption: a sequence of canonical
representatives of cosets. Crucially, each vector in this sequence is either the representative
of the corresponding regular coset, or of the dual one, and the one Bob received is decided
by the challenge encryption. As we use the same argument for Charlie, when Bob and
Charlie receive independent challenges — as this is the case when considering the non-
colliding distribution — then it is almost certain that for some index, Bob receives a
representative of a regular coset, and Charlie the representative of the corresponding dual
coset, which allow them to win the monogamy-of-entanglement game for coset states.

Identical and product distributions. The same argument unfortunately does not
work with identical and product distributions. With identical distribution indeed, the
challenges are the same for Bob and Charlie, then they extract the same lock-values,
and cannot break the monogamy-of-entanglement. The same problem also happens with
product distribution, although Bob and Charlie receive the same challenge only with

5.4. Locking a Message with Coset States — A Single-Decryptor Construction
107

probability 1/4. But we cannot rule out that the adversaries in the real-or-random anti-
piracy game could have an advantage over the trivial probability only in this case, which
prevents us to proceed with the reduction.

Monogamy-of-entanglement with identical basis. To overcome this first issue,
we introduce a new monogamy-of-entanglement property, that we name monogamy-of-
entanglement with identical basis. In the corresponding game, Bob and Charlie are asked
to return a vector belonging to the same coset (regular or dual). What prevents adversaries
to win the game with probability 1 is that Alice does not know in which coset the vectors
returned by Bob and Charlie must belong: this information is revealed to Bob and Charlie
only during the challenge phase. We prove that the best strategy for a triple of adversaries
in this game is for Alice to make a random guess on this challenge coset, and measure the
coset state accordingly. Such a strategy succeeds with probability negligibly close to 1/2.
We also prove that, when parallelizing this game — with a polynomial number of coset
states and an independent challenge coset picked for each one of them — the winning
probability of any triple of adversaries drops to negligible. We present this new game in
more details in Section 5.6.

5.4.7 Issues with Simultaneous Extraction
There is actually a more fundamental problem when proving the security of the single-
decryptor (with respect to any challenge distribution) that we did not mention so far for
sake of conciseness. As we mentioned above, the crux of the proof relies on the fact that,
if Bob can guess which message has been encrypted given his “fake quantum key” (one
half of the bipartite state generated by Alice), then there exists an efficient lock-value
extractor that uses the fake quantum key. The reduction then proceeds as follows. Bob uses
his extractor to obtain a lock-value, then Charlie uses his extractor to obtain a possibly
different lock-value, and they both return an element of their lock-value as a candidate
vector in the monogamy-of-entanglement game. The problem is that the two fake keys
produced by Alice can be entangled and, as the extraction on Bob’s side is in fact a
measurement, this measurement might perturb Charlie’s fake key, in a way that prevents
it to be used to make a correct guess on Charlie’s challenge. In this case, we can no longer
ensures the existence of a lock-value extractor on Charlie’s side, and the reduction cannot
carry on.

Threshold implementation. Coladangelo, Liu, Liu, and Zhandry (2021), based on
works of Zhandry (2020) and Aaronson, Liu, Liu, Zhandry, and Zhang (2021), overcome
this problem using so-called “threshold implementations”. In a nutshell, they represent
the challenge phase as two tests, respectively performed on Bob’s and Charlie’s fake keys,
each one being a mixture of projective measurements. Each projective measurement,
parametrized by a message m and random coins r, first determines the probability that
Bob (resp. Charlie) makes a correct guess when given the encryption of m, performed
with random coins r, and returns 1 if this probability is greater than the trivial probability
for the distribution we consider. With such a representation, they show that the bipartite
state shared by Bob and Charlie collapses, conditioned on both test succeeding, to a
state where both registers are in superposition over “successful fake keys”, meaning that
they will keep succeeding in the test no matter how many times we perform it. Then,
applying the extractor on Bob’s side might perturb the state on Charlie’s side, but it

108 Chapter 5. Towards Unclonable Cryptography in the Plain Model

still remains a superposition over successful fake keys. Thus, Charlie can still make a
correct guess, which ensures the existence of a lock-value extractor using his state, and we
can finish the reduction. By applying this technique, we show that the single-decryptor
of construction 16 has real-or-random anti-piracy security with respect to non-colliding
distribution.

Identical and product distributions. This technique can however not be applied
when considering identical and product distributions. Intuitively, the technique works in
the non-colliding distribution because the message and coins (m, r) used for constructing
Bob’s and Charlie’s challenges are independent in every case. On the other hand, they
can be the same in the identical and product distributions.4 In this case, extracting from
Bob’s register might collapse Charlie’s state to a superposition of successful fake keys with
respect to a single set of coins r only. As we need Charlie to be able to make a correct
guess on average on every possible set of coins, the argument no longer follows.

Simultaneous compute-and-compare obfuscation. We have not been able to solve
this issue so far, and copy-protection of point functions with respect to identical and
product distributions, and unclonable encryption in the plain model, remain open prob-
lems. Nevertheless, we show that this issue can be reduced to how compute-and-compare
obfuscation can be used in a non-local context. Recall that compute-and-compare obfusca-
tion states that, loosely speaking, if the lock-value of a compute-and-compare program
CC[f, ℓ, s] cannot be extracted from its function, and some (quantum) auxiliary informa-
tion, then there is a way to obfuscate this program such that it is indistinguishable from a
simulated dummy program that returns ⊥ on every input, even given the corresponding
auxiliary information. We conjecture (conjectures 1 and 2) that this is still true when
considering two compute-and-compare programs instead of one, and a bipartite auxiliary
information. Namely, if their respective lock-values cannot be simultaneously extracted by
two measurements acting on different registers of the auxiliary information state, then
there is no pair of measurement, each given a different register of the auxiliary information
state, that can simultaneously distinguish these programs from a dummy program as
above. We elaborate on this question in Section 5.7, and we will see that it crucially
depends on whether the randomness used for the compute-and-compare obfuscations if
independent or not.
Theorem 17 (Real-Or-Random Anti-Piracy Security of Construction 16, with Respect
to the Identical and Product Distributions). Assume the existence of post-quantum
indistinguishability obfuscation, one-way functions, compute-and-compare obfuscation
for the class of unpredictable distributions. Assume conjectures 1 and 2. Then the
single-decryptor scheme defined in construction 16 has anti-piracy security, with respect
to the identical and product distributions.

5.5 A Copy-Protection Scheme of Pseudorandom Func-
tions in the Plain Model

Let us now turn to the construction of copy-protection of pseudorandom functions. In
this section, we present the construction of Coladangelo, Liu, Liu, and Zhandry (2021),

4They are actually always the same in the identical distribution.

5.5. A Copy-Protection Scheme of Pseudorandom Functions in the Plain Model
109

then show that it satisfies reversed anti-piracy security, with respect to any challenge
distribution D, provided that the single-decryptor of construction 16 has real-or-random
anti-piracy with respect to D. This immediately tells us that it has reversed anti-piracy
security, with respect to the non-colliding distribution.

5.5.1 High-Level Description
To protect a pseudorandom function (described by a key k), the authors use the same
technique as the one used in the previous section to lock a message with coset states. The
idea is to obfuscate a program, with a key k and random coset membership programs
hardwired. This program takes as input a pseudorandom function’s input x, and vectors
u1, . . . , uκ, and checks whether each vector belongs to the corresponding (regular or dual)
coset, similarly to the single-decryptor construction. If this is the case, the program returns
PRFk(x), otherwise it returns an error symbol ⊥. We use the κ first bits of the input x to
decide whether to use the membership program for the regular or dual coset. The problem
with this idea is that the obfuscated program could leak some information on the key, that
Bob and Charlie could then use to answer their challenge. This can be overcome by using
the “hidden trigger” technique introduced by Sahai and Waters (2014). Loosely speaking,
this technique slightly modifies the program, and allows to argue that the challenges Bob
and Charlie get in the game are independent of the key.

Hidden trigger technique. In a nutshell, the hidden trigger technique applied to this
construction consists in generating a program Rk, with inputs x and u1, . . . , uκ as above,
with two modes. In the normal mode, the program is equivalent to the one described above:
it performs a sequence of membership checks, and returns the pseudorandom function
evaluation of the input x if they all pass. In the hidden trigger mode, a program Q is
extracted from x, and the outcome of Rk is Q(u1, . . . , uκ). Deciding in which mode the
program runs is done by testing whether x is a “trigger input” at the beginning of the
program. If it is, the program runs in the hidden trigger mode, otherwise in the normal
mode. We do not detail how this test, nor the program extraction are implemented in
this section, and refer the curious reader to Appendix A.3 for more information. It is still
important to understand the security of the construction to describe a few properties that
these trigger inputs must have.

• The set of trigger inputs it sparse, which ensures that the program Rk implements
almost perfectly the pseudorandom function.5

• There is an efficient (randomized) procedure to generate, given a program Q, a
trigger input, whose extracted program is Q.

• Let x be a random input, r be a set of coins for the aforementioned trigger input
generation procedure, and Q be a program functionally equivalent to the program
QPRFk(x),r defined in program 1. Then, the trigger input x′, generated using the
procedure above with randomness r and program Q, is indistinguishable from x,
even given access to R̂k, and a set of vectors that pass the membership tests. As a
sanity check, remark that the outcome of Rk, when run on x or on x′, is the same.

5More precisely, the generation of the trigger inputs test is randomized, and for each x, the probability
that Rk(x, u1, . . . , uκ) = PRFk(x) is negligibly close to 1 (provided that the vectors ui all pass the
membership tests).

110 Chapter 5. Towards Unclonable Cryptography in the Plain Model

In the former case, this is because x is almost certainly not a trigger input, hence
the program is executed in the normal mode. In the latter, this is because x′ is a
trigger input, hence the program is executed in the hidden trigger mode and returns
the outcome of QPRFk(x),r(u1, . . . , uκ) — where u1, . . . , uκ all pass the membership
checks — which is exactly PRFk(x).

5.5.2 Construction

We present the construction of copy-protection of pseudorandom functions, and prove that
we can reduce its reverse indistinguishability anti-piracy security to the real-or-random
anti-piracy security of construction 16. As we mentioned above, we do not detail the
implementation of the test for trigger inputs, nor the program extraction procedure. We
simply denote these procedures as Test and Extract, sampled from a family DHiddenTrigger.
This construction protects a family of puncturable and extracting pseudorandom functions
{PRFk}k∈K, with input space {0, 1}nX , and output space {0, 1}nZ , where nX , nZ = poly(λ),
and nZ is smaller enough than nX . Let κ = poly(λ), κ < nX . Let n = λ. Recall that for
any program P, we use the notation P̂ = iO(P).

Construction 17: Copy-Protection of Pseudorandom Functions [CLLZ21]
Protect(1λ, k) :

− Sample κ n-long cosets states’ descriptions {Ai, si, s′i}i∈J1,κK. Let PAi+si

and PA⊥
i +s′

i
be the corresponding membership programs for every i.

− Prepare the corresponding coset states |A1,s1,s′
1
⟩ ⊗ · · · ⊗ |Aκ,sκ,s′

κ
⟩.

− Sample (Test,Extract)←$ DHiddenTrigger.

− Generate the program Rk, defined in program 2, parametrized by the
procedures Test and Extract, and the obfuscated membership programs
{P̂Ai+si

, P̂A⊥
i +s′

i
}i∈J1,κK.

− Return | k⟩ =
(⊗κ

i=1 |Ai,si,s′
i
⟩ , R̂k

)
.

Eval
((⊗κ

i=1 |Ai,si,s′
i
⟩ , R̂k

)
, x
)

:

− For i ∈ J1, κK:
∗ if xi = 1: apply a Hadamard gate Hn on |Ai,si,s′

i
⟩;

∗ otherwise leave the state unchanged;
∗ in any case, denote the resulting state | ′

i⟩.

− Run the program R̂k coherently on (x, | ′

1⟩ , . . . , |
′

κ⟩). Let z denotes
the outcome.

− Uncompute the Hadamard gates above.

− Return z.

We now describe the program R, used in the encryption procedure.

5.5. A Copy-Protection Scheme of Pseudorandom Functions in the Plain Model
111

Program 2: Program R
Hardwired: Trigger input test Test, program extraction procedure Extract, programs
(P̂Ai+si

, P̂A⊥
i +s′

i
) for all i ∈ J1, κK.

Input: A bitstring x ∈ {0, 1}nX , and κ vectors u1, . . . , uκ in Fn2 :

R(x, u1, . . . , uκ) :

− If Test(x) = 1: (Hidden Trigger Mode)
∗ Extract Q← Extract(x).
∗ Return Q(u1, . . . , uκ).

Else: (Normal Mode)
∗ For i ∈ {1, . . . , κ} :

· If ri = 0 and P̂Ai+si
(ui) = 0 : return ⊥.

· Else if ri = 1 and P̂A⊥
i +s′

i
(ui) = 0 : return ⊥.

· Else: continue.
∗ Return PRF1,k1(x).

Correctness. As we mentioned above, the probability for x to be a trigger input is
negligible for every input x. Then, the program Rk is almost always run in normal mode,
and the correctness follows from the same argument as for construction 16.

Theorem 18 (Correctness of Construction 17). Assume the existence of post-quantum
indistinguishability obfuscation, one-way functions, and compute-and-compare obfuscation
for the class of unpredictable distributions. Then the copy-protection scheme defined in
construction 17 has correctness.

Reversed anti-piracy security. Proving that this construction has reversed anti-piracy
security with respect to some challenge distribution D amounts to proving that the
following game cannot be won with probability greater than the corresponding trivial
winning probability. Alice is given a protected pseudorandom function, and an image
z = PRFk(x), splits it and shares it between Bob and Charlie. The latter are then given
challenges x1 and x2 respectively and must tell whether their challenge is x or not. As
mentioned above, the hidden trigger technique allows us to replace x1 by a trigger input
whose extracted program is Qz,r when x1 = x, and by another trigger input whose extracted
program is Qz′,r — where z′ is a random image — when x1 ̸= x. We can do the same
with x2. Now, because the pseudorandom functions we consider are extracting, we can
replace the image Alice receives by a random bitstring z, and change the challenges x1
and x2 accordingly. The resulting hybrid game is equivalent to the original one, from
the adversaries’ point of view. Crucially, in this last hybrid game, the challenges are
completely independent of the pseudorandom function’s key. Also, they can be constructed
from a challenge in the real-or-random anti-piracy game of the single-decryptor scheme of
construction 16, which allows us to do the reduction.

Reduction to real-or-random anti-piracy. Assume that a triple of adversaries Alice,
Bob, and Charlie, wins the game above (with trigger inputs) with probability p greater

112 Chapter 5. Towards Unclonable Cryptography in the Plain Model

than the trivial winning probability. We construct a triple of adversaries Alex, Billy,
and Clover, for the real-or-random anti-piracy game of the single-decryptor scheme of
construction 16. In this game, Alex receives κ coset states — the quantum decryption
key — and obfuscated membership programs for all of them — the public key. She
samples a random message m from {0, 1}nZ and sends it to the challenger. She samples
(Test,Extract) ←$ DHiddenTrigger, and uses these procedures, along with the membership
programs, to generate the program R. Then she simulates Alice on the coset states, the
message m, and the iO-obfuscation of R to receive a bipartite quantum state, that she
shares between Billy and Clover, along with (Test,Extract). Billy receives a challenge
(r, Q̂m1,r): the encryption of m, or of another random message. He generates a trigger
input whose extracted program is Q̂m1,r. Note that a trigger input generated in this way
follows the same distribution as the challenge received by Bob in the last hybrid game.
Clover does the same with her challenge, and they respectively simulate Bob and Charlie
on their respective trigger inputs to receive b∗1 and b∗2, which they output. As the elements
given to Alice, Bob, and Charlie, follow the same distribution as the ones they receive
in the reversed anti-piracy game, Alex, Billy, and Clover win the real-or-random game
with the same probability p, which finishes the reduction. We provide a formal proof in
Appendix A.3.

Theorem 19 (Reversed Anti-Piracy Security of Construction 17). Assume the existence
of post-quantum indistinguishability obfuscation, one-way functions, and compute-and-
compare obfuscation for the class of unpredictable distributions. Assume that the single-
decryptor of construction 16 has correctness and real-or-random anti-piracy security
with respect to a challenge distribution D. Then the copy-protection scheme defined in
construction 17 has reversed anti-piracy security, with respect to D.

Given that we prove (Theorems 15 and 16) that this single-decryptor has real-or-random
anti-piracy security with respect to non-colliding distribution, it gives us a copy-protection
scheme of pseudorandom functions with reversed anti-piracy security with respect to the
non-colliding distribution. It then yields, leveraging Theorem 12 a copy-protection scheme
of point functions with anti-piracy security, with respect to the non-colliding distribution.

Corollary 1 (Reversed Anti-Piracy Security of Construction 17 with Respect to the
Non-Colliding Distribution). Assume the existence of post-quantum indistinguishability
obfuscation, one-way functions, and compute-and-compare obfuscation for the class of
unpredictable distributions. Then the copy-protection scheme defined in construction 17
has reversed anti-piracy security, with respect to the non-colliding distribution.

Corollary 2 (Anti-Piracy Security of Construction 14 with Respect to the Non-Colliding
Distribution). Assume the existence of post-quantum indistinguishability obfuscation,
one-way functions, and compute-and-compare obfuscation for the class of unpredictable
distributions. Then the copy-protection scheme defined in construction 14 has anti-piracy
security, with respect to the non-colliding distribution.

Finally, our conjectures on simultaneous compute-and-compare obfuscation (conjec-
tures 1 and 2) give us anti-piracy for these constructions with respect to the identical
and product distributions, and unclonable encryption. We describe these conjectures in
Section 5.7.

Corollary 3 (Reversed Anti-Piracy Security of Construction 17 with Respect to the Identi-
cal and Product Distributions). Assume the existence of post-quantum indistinguishability

5.6. Monogamy-Of-Entanglement Game with Identical Basis 113

obfuscation, one-way functions, and compute-and-compare obfuscation for the class of
unpredictable distributions. Assume conjectures 1 and 2. Then the copy-protection scheme
defined in construction 17 has reversed anti-piracy security, with respect to the identical
and product distributions.

Corollary 4 (Anti-Piracy Security of Construction 14 with Respect to the Identical
and Product Distributions). Assume the existence of post-quantum indistinguishability
obfuscation, one-way functions, and compute-and-compare obfuscation for the class of
unpredictable distributions. Assume conjectures 1 and 2. Then the copy-protection scheme
defined in construction 14 has anti-piracy security, with respect to the identical and
product distributions.

Corollary 5 (Unclonable-Indistinguishability of Construction 15). Assume the exis-
tence of post-quantum indistinguishability obfuscation, one-way functions, and compute-
and-compare obfuscation for the class of unpredictable distributions. Assume conjec-
ture 1. Then the unclonable encryption scheme defined in construction 15 has unclonable-
indistinguishability.

5.6 Monogamy-Of-Entanglement Game with Identi-
cal Basis

As mentioned in Section 5.4.6, we need a new monogamy-of-entanglement property for
coset states in order to prove the real-or-random anti-piracy security of construction 16 in
the identical and product distributions. We present in this section such a new monogamy-
of-entanglement property. In this game, Alice is given a random coset state, splits it, and
share it between Bob and Charlie. As in the original game, Bob and Charlie are then
given the description of the subspace, but contrarily to it, they are not asked to return a
vector in different cosets, but in the same one: either the regular coset or the dual one. If
they can freely choose this coset, the task is easy, as Alice can simply measure the state in
a random basis (computational or Hadamard) and sends the outcome to Bob and Charlie.
We wonder whether it is still an easy task when the choice is not free: Bob and Charlie
are instructed in which coset (regular or dual) the vector they return must belong to,
and Alice does not know it in advance. If Alice applies the strategy mentioned above,
the adversaries win the game with probability 1/2. In this section, we prove that she
cannot actually do better than this, meaning that the winning probability of any triple of
adversaries in this game is upper-bounded by 1/2. We formalize this new property below,
and provide an illustration of this game in Figure 5.8.

Theorem 20 (Monogamy-Of-Entanglement With Identical Basis For Coset States (Statis-
tical Version)). Define the following game, between a challenger and a triple of adversaries
A, B, C, and parametrized by a security parameter λ. During the game, B and C are not
allowed to communicate. Let n = λ.

• Setup phase:

− The challenger samples an n-long coset state’s description (A, s, s′).

− The challenger sends |As,s′⟩ to A.

• Splitting phase:

114 Chapter 5. Towards Unclonable Cryptography in the Plain Model

Challenger
(A, s, s′)←$

b←$ {0, 1}
A

|As,s′⟩

B
|ψ∗⟩1

A, b

v∗

C|ψ∗⟩2

A, b

w∗

Winning Condition:
b = 0 ∧ v∗, w∗ ∈ A+ s

∨
b = 1 ∧ v∗, w∗ ∈ A⊥ + s′

Figure 5.8: Monogamy-of-entanglement game with identical basis for coset states. (A, s, s′) is a
random n-long coset state’s description. No triple of adversaries wins this game with probability
non-negligibly greater than 1/2.

− A prepares a bipartite quantum state |ψ∗⟩12.

− A sends |ψ∗⟩1 to B and |ψ∗⟩2 to C.

• Challenge phase:

− The challenger samples a bit b←$ {0, 1}.

− The challenger sends A and b to both B and C.

Let v∗ denotes the output of B, and w∗ denotes the output of C. They win if b = 0
and v∗, w∗ ∈ A+ s, or if b = 1 and v∗, w∗ ∈ A⊥ + s′.

The monogamy-of-entanglement with identical basis property states that no triple of
adversaries can win this game with non-negligible advantage over 1/2. In other words, for
any triple of adversaries A, B, and C,

Pr


b = 0 ∧ v∗, w∗ ∈ A+ s

∨
b = 1 ∧ v∗, w∗ ∈ A⊥ + s′

:

v∗ ← B(|ψ∗⟩1 , A, b)
w∗ ← C(|ψ∗⟩2 , A, b)
|ψ∗⟩12 ← A(|As,s′⟩)
s, s′ ←$ Fn2
A←$ {A ∈ Fn×n/2

2 : A is full-rank}

 ≤
1
2 + negl(λ)

For our single-decryptor security purpose, we actually need to consider a parallel version
of this game. That is, Alice is given κ coset states, and Bob and Charlie are instructed
on the bases in which to return their κ vectors depending on κ random coins. We prove
that the winning probability in this case drops exponentially with κ. Furthermore, as
with the other coset states games we mentioned in this thesis, these upper-bounds are still
true when the adversaries are computationally bounded and given obfuscated membership
programs for the regular and dual cosets.

In the following, we provide a high-level proof of our monogamy-of-entanglement with
identical basis game. A more detailed proof can be found in Appendix A.4.

5.6. Monogamy-Of-Entanglement Game with Identical Basis 115

5.6.1 Proof of Upper-Bound

We will actually study a “BB84 version” of this game. Using arguments from Culf and
Vidick (2022), we can prove that winning the coset states version reduces to winning this
BB84 version.

In this version, Alice receives a random n-long BB84 state |xθ⟩, is asked to split it and
share it between Bob and Charlie, who then both receive the basis θ, and a bit b, indicating
whether they need to return x|I (if b = 0) or x|Ī (if b = 1).6 As with the coset states
version, we want to prove that the winning probability of this game is upper-bounded by
1/2 + negl(n).

Extended non-local games. Our proof follows the structure of the one of Tomamichel,
Fehr, Kaniewski, and Wehner (2013). We first interpret this game as the following
“extended non-local game”. Bob and Charlie prepare a tripartite quantum state; we ask the
first register to be n-qubits long. They send the first register to the challenger, Bob keeps
the second, and Charlie the third. From this step, Bob and Charlie cannot communicate.
The challenger measures the first register in a basis θ sampled at random; let x denotes
the outcome. Then, the challenger sends θ, and a random bit b to both Bob and Charlie,
who have to return x|Ib

, as above.
Given a triple of adversaries, Alice, Bob, and Charlie, winning the monogamy-of-

entanglement game (BB84 version) — for n-qubits long BB84 state — with probability
p, we can easily construct a pair of adversaries Billy, and Clover, winning the extended
non-local game with the same probability p. Billy and Clover first prepare n EPR states
|ϕ+⟩ = (|00⟩+ |11⟩)/

√
2. Then they simulate Alice on the second halves of all these states

to get a bipartite state |ψ∗⟩12 that they share between each other, and they send the first
halves of the EPR states to the challenger. Then, when receiving the challenge (θ, b), Billy
simulates Bob on |ψ∗⟩1 and the challenge, and returns the outcome. Clover does the same
with Charlie and |ψ∗⟩2. The fact that the winning probability of this game is p follows
from the following observation. The quantum state shared by the challenger, Bob, and
Charlie before the challenger’s measurement is

∑
r∈{0,1}n

|r⟩0A(|r⟩)12

where the registers 0, 1, and 2, respectively denote the challenger’s, Bob’s, and Charlie’s
registers, and A is the algorithm representing Alice. After the challenger’s measurement,
by denoting x the outcome, the state is now

∑
r∈{0,1}n

|xθ⟩⟨xθ| |r⟩0A(|r⟩)12

= |xθ⟩0A(|xθ⟩)12

Alice’s (or A’s) input distribution is then the same as the one in the monogamy-of-
entanglement game, meaning that Bob’s and Charlie’s outcome will be both correct with
probability p.

6We define I = {i ∈ J1, nK : θi = 0}. Recall that x|I is a bitstring whose components are xi for all
i ∈ I, and 0 everywhere else, and x|Ī is defined analogously. In the following, we write I0 = I, and I1 = Ī.

116 Chapter 5. Towards Unclonable Cryptography in the Plain Model

A first upper-bound. Our goal is now to upper-bound the winning probability of the
extended non-local game. Note first that, using Naimark’s dilatation theorem, we can
assume without loss of generality that any pair of adversaries, Bob and Charlie, can be
represented as two families of projective measurements {Bθ,b}θ,b (for Bob), and {Cθ,b}θ,b
(for Charlie). With these notations, we can express the winning probability of the game as
the quantity

Πθ,b =
∑

x∈{0,1}n

|xθ⟩⟨xθ| ⊗Bθ,b
x|Ib
⊗ Cθ,b

x|Ib

averaged over θ such that |θ| = n/2, and b ∈ {0, 1}.
Upper-bounding this expected value cannot be done simply using triangle inequality, as

the bound would not be tight enough for our purpose. We rather use a lemma introduced
by Tomamichel, Fehr, Kaniewski, and Wehner (2013) (Lemma 4), that allows us to state
that the winning probability is upper-bounded by the quantity

max
θ,b
∥Πθ,bΠπk,α(θ,b)∥

averaged over a family of orthogonal permutations {πk,α}k∈J1,NK,α∈{0,1} — where we denote
by N the number of bases θ such that |θ| = n/2.7 We will prove later on the existence of
a family of orthogonal permutations that satisfies the requirements we need.

Upper-bounding ∥Πθ,bΠθ′,1−b∥. Note that the quantity ∥Πθ,bΠθ′,1−b∥ is trivially upper-
bounded by 1. Using this upper-bound for half of the permutations — say the {πk,0}k —
yields the following upper-bound on the winning probability:

1
2 + 1

2N
∑

k∈J1,NK

max
θ,b
∥Πθ,bΠπk,1(θ,b)∥

We then simply need to show that the second member of this equation is negligible.
A careful analysis (which we leave in Appendix A.4) shows that, when b′ = 1− b, the

quantity ∥Πθ,bΠθ′,b′∥ depends on the number of indices d(θ, θ′) on which θ and θ′ differ.
More precisely, ∥Πθ,bΠθ′,b′∥ is upper-bounded by 2−d(θ,θ′)/4. Thus, we want a family of
permutations such that, for all k, the last bit of πk,1(θ, b) is 1 − b and d(θ, θ′) is large
enough.

Finding the family of permutations. We build upon a result of Culf and Vidick
(2022) to construct a family of permutations with the aforementioned properties. More
concretely, Culf and Vidick define a mutually orthogonal family of permutations πk, indexed
by 1 ≥ k ≥ N , with the latter property. We then define another family π̃k,b, indexed by
1 ≥ k ≥ N and b ∈ {0, 1}, where π̃k,b(θ, b) = (πk(θ), 1− b). It is easy to see that this new
family of permutations has both the former and the latter properties, and we prove that it
is also a mutually orthogonal family.

With this family, the second member of the equation above is negligible, hence the
winning probability in the monogamy-of-entanglement game (for both BB84 and coset
versions) is upper-bounded by 1/2 + negl(n).

7A family of permutations {πk}k is orthogonal if for all x, πk(x) = πk′(x) implies k = k′.

5.6. Monogamy-Of-Entanglement Game with Identical Basis 117

5.6.2 Computational Parallelized Version
As mentioned above, when this game is parallelized, the winning probability drops to
negligible. The proof follows the same structure as the one above, and we give it in
Appendix A.4. Furthermore, giving iO-obfuscated membership programs for the regular
and dual cosets to computationally bounded adversaries does not significantly increase
this probability. The proof uses the same arguments as the ones used in Section 5.8.4.
We formalize this computational-parallelized version, and provide an illustration of it in
Figure 5.9.

Theorem 21 (Monogamy-Of-Entanglement With Identical Basis For Coset States (Com-
putational Parallelized Version)). Define the following game, between a challenger and a
triple of adversaries A, B, C, and parametrized by a security parameter λ. During the
game, B and C are not allowed to communicate. Let n = λ, and κ = poly(λ).

• Setup phase:

− The challenger samples κ independent random n-long coset state’s description
{(Ai, si, s′i)}i∈J1,κK.

− The challenger generates the corresponding iO-obfuscated programs P̂Ai+si
, P̂A⊥

i +s′
i

for all i ∈ J1, κK.

− The challenger sends ⊗κ
i=1 |Ai,si,s′

i
⟩, and {P̂Ai+si

, P̂A⊥
i +s′

i
}i∈J1,κK to A.

• Splitting phase:

− A prepares a bipartite quantum state |ψ∗⟩12.

− A sends |ψ∗⟩1 to B and |ψ∗⟩2 to C.

• Challenge phase:

− The challenger samples a κ-long bitstring r ←$ {0, 1}κ.

− The challenger sends (Ai)i∈J1,κK and r to both B and C.

Let (v∗1, v∗2, . . . , v∗κ) denotes the output of B, and (w∗1, w∗2, . . . , w∗κ) denotes the output
of C. They win if, for all i ∈ J1, κK, ri = 0 and v∗i , w

∗
i ∈ Ai + si, or if ri = 1 and

v∗i , w
∗
i ∈ A⊥i + s′i.

The monogamy-of-entanglement with identical basis property states that no triple of
efficient adversaries can win this game with non-negligible probability. In other words, for
any triple of QPT algorithms A, B, and C,

Pr


∀i ∈ J1, κK :

ri = 0 ∧ v∗
i , w

∗
i ∈ Ai + si

∨
ri = 1 ∧ v∗

i , w
∗
i ∈ A⊥

i + s′
i

:

(v∗
1 , v

∗
2 , . . . , v

∗
κ)← B(|ψ∗⟩1 , A, r)

(w∗
1 , w

∗
2 , . . . , w

∗
κ)← C(|ψ∗⟩2 , A, r)

|ψ∗⟩12 ← A
(⊗κ

i=1 |Ai,si,s′
i
⟩ , {P̂Ai+si , P̂A⊥

i
+s′

i
}i∈J1,κK

)
r ←$ {0, 1}κ

si, s
′
i ←$ Fn

2 ∀i ∈ J1, κK
Ai ←$ {A ∈ Fn×n/2

2 : A is full-rank} ∀i ∈ J1, κK


≤ negl(λ)

118 Chapter 5. Towards Unclonable Cryptography in the Plain Model

Challenger
{(Ai, si, s

′
i)}i∈J1,κK ←$

r ←$ {0, 1}κ

A

⊗κ
i=1 |Ai,si,s′

i
⟩

{P̂i, P̂⊥i }i∈J1,κK

B
|ψ∗⟩1

{Ai}i∈J1,κK, r

{v∗i }i∈J1,κK

C|ψ∗⟩2

{Ai}i∈J1,κK, r

{w∗i }i∈J1,κK

Winning Condition:
For all i ∈ J1, κK :

ri = 0 ∧ v∗
i , w

∗
i ∈ A+ s

∨
ri = 1 ∧ v∗

i , w
∗
i ∈ A⊥ + s′

Figure 5.9: Computational κ-parallelized version of the monogamy-of-entanglement game with
identical basis for coset states. All (Ai, si, s′i) are random n-long coset state’s descriptions. P̂i
and P̂⊥i respectively denote the iO-obfuscated membership programs iO(PAi+si) and iO(PA⊥

i +s′
i
).

No triple of adversaries can win this game with non-negligible probability.

5.7 Conjectures on Simultaneous Compute-and-Compare
Obfuscation

In this section, we present our conjectures. We first give an overview of the conjectures,
then we define them formally, and finally we discuss their relation to similar conjectures
in a recent work of Ananth and Behera (2024).

5.7.1 Original Compute-And-Compare Obfuscation
Recall that compute-and-compare obfuscation (Section 3.3.8) works as follows. Let D
be a distribution over pairs (CC[f, ℓ, s], aux) where CC[f, ℓ, s] is a compute-and-compare
program with function f , lock-value ℓ, and secret s, and aux is a corresponding (possibly
quantum) auxiliary information. D is said unlearnable if no efficient adversary can extract
the lock-value of CC[f, ℓ, s] from (f, aux) with non-negligible probability (averaged over
pairs of program and auxiliary information sampled from D). If D is unlearnable, then
there exists an efficient procedure — called a compute-and-compare obfuscator — that
takes as input a compute-and-compare program CC[f, ℓ, s], and returns an obfuscated
version of it: C̃C[f, ℓ, s]. This obfuscated program is functionally equivalent to the original
one, but is indistinguishable from a simulated dummy program that returns ⊥ on every
input.

5.7.2 Non-Local Context
We ask whether this still holds in a non-local context. More precisely, consider the two
following tasks, which we call simultaneous distinguishing and simultaneous predicting.

5.7. Conjectures on Simultaneous Compute-and-Compare Obfuscation 119

Simultaneous predicting asks two players, Bob and Charlie, given a function associated
to a compute-and-compare program, and a quantum state as auxiliary information on
the program, to return the associated lock-value. Note that the function given to Bob
and the one given to Charlie are not necessarily the same, and that the same goes for the
quantum states they are given. Also, crucially, Bob’s and Charlie’s quantum states can be
entangled. In simultaneous distinguishing, Bob and Charlie are given either an obfuscated
compute-and-compare program, or the outcome of a simulated dummy program. As in
simultaneous predicting, they are also given a quantum state each, and here, they are
asked to tell whether they received the obfuscated program, or the simulated one.

These two tasks are parameterized by a distribution D over triples of the form
(CC1[f1, ℓ1, s1],CC2[f2, ℓ2, s2], |ψ⟩12) — where the two first elements are compute-and-
compare programs used to create the challenges in the challenge phase and the last one is
the bipartite quantum state shared by Bob and Charlie. We say that such a distribution
is simultaneously unpredictable if no adversaries can succeed in the associated simultane-
ous predicting task; and that simultaneous compute-and-compare obfuscation exists for
this distribution if there is a compute-and-compare obfuscator with respect to which no
adversaries can succeed in the associated simultaneous distinguishing task.8 The question
we ask now is:

Question. Is there simultaneous compute-and-compare obfuscation for any simultaneous
unpredictable distribution ?

As discussed in Coladangelo, Liu, Liu, and Zhandry (2021), this question is far from trivial.
Indeed, consider its contraposition: if all candidate algorithms for simultaneous compute-
and-compare obfuscation fail to obfuscate the programs as desired, does it mean that the
distribution is simultaneously predictable for a certain pair of algorithms ? Intuitively,
the difficulty here stems from whether the challenges are independent or not: if they
are, then one can analyze the two adversaries in the distinguishing game independently,
and thus say that if the first adversary succeeds in their part of the task, then they
can predict their lock-value, and that the same goes for the second adversary. If the
challenges are not independent in the other hand, it is not clear what happens when the
first adversary predicts the lock-value. Concretely indeed, the prediction is a measurement,
Bob’s measurement might perturb Charlie’s register in a way that prevents the latter to
predict his lock-value.

In this work, we break down this question in the following way. We consider two cases.
In the first one, Bob and Charlie, in the simultaneous distinguishing task, either both
receive an obfuscated program, or a simulated one, while in the second task, this choice is
independent. In both tasks, the programs they receive are obfuscated using the same set
of random coins.

5.7.3 Conjectures
We present the two tasks mentioned above. Both tasks are parameterized by a distribution
D over triples of the form (CC[f1, ℓ1, s1],CC[f2, ℓ2, s2], |ψ⟩12), and played by two non-
communicating players Bob and Charlie.

8Succeeding in these tasks mean that Bob and Charlie must both extract, or both distinguish correctly
(depending on the task).

120 Chapter 5. Towards Unclonable Cryptography in the Plain Model

Simultaneous distinguishing task. A challenger samples a triple (CC[f1, ℓ1, s1],
CC[f2, ℓ2, s2], |ψ⟩12) from D. Then, the challenger sends (f1, |ψ⟩1) to Bob and (f2, |ψ⟩2) to
Charlie. The latter succeed if Bob returns ℓ1 and Charlie returns ℓ2.

Simultaneous predicting task. We first define an identical bit version of this game. A
challenger samples a triple of (CC[f1, ℓ1, s1],CC[f2, ℓ2, s2], |ψ⟩12) from D, random coins r,
and a bit b. The challenger computes C1 ← CC-Obf(CC[f1, ℓ1, s1]; r) if b = 0, or C1 ← Sim()
if b = 1, where Sim is an efficient simulator for compute-and-compare obfuscation. The
challenger computes C2 in the same way, using CC[f2, ℓ2, s2] instead of CC[f1, ℓ1, s1];
importantly, the same random coins r are used for obfuscation of both programs. Finally,
the challenger sends (C1, |ψ⟩1) to Bob, and (C2, |ψ⟩2) to Charlie. Bob and Charlie succeed
they both return b.

We also define this task in the product bit version, in which the challenger samples two
independent bits b1 and b2, deciding whether Bob and Charlie respectively are given an
obfuscated program, or a simulated one.

We now state our two conjectures, illustrated in Figure 5.10.

Conjecture 1. Let D a distribution over triples of the form (CC[f1, ℓ1, s1],CC[f2, ℓ2, s2],
|ψ⟩12). Assume that, for all QPT adversaries (B, C), the probability that (B, C) succeed in
the simultaneous predicting task is negligible. Then, there exists a compute-and-compare
obfuscator CC-Obf and its associated efficient simulator Sim with respect to which, no
adversaries (B′, C ′) succeed in the simultaneous distinguishing task (identical bit version)
with probability significantly greater than 1/2.

Conjecture 2. Let D a distribution over triples of the form (CC[f1, ℓ1, s1],CC[f2, ℓ2, s2],
|ψ⟩12). Assume that, for all QPT adversaries (B, C), the probability that (B, C) succeed in
the simultaneous predicting task is negligible. Then, there exists a compute-and-compare
obfuscator CC-Obf and its associated efficient simulator Sim with respect to which, no
adversaries (B′, C ′) succeed in the simultaneous distinguishing task (product bit version)
with probability significantly greater than 1/2.

5.7.4 Related Work
In a recent work of Ananth and Behera (2024), the authors make a similar conjecture,
this time on simultaneous Goldreich-Levin prediction. Roughly, the usual Goldreich-Levin
theorem states that if f is a one way function (meaning that a random x is not predictable
given f(x)), then no adversary can distinguish the dot product x · r from a random
bit, given f(x) — where x is a random input and r a random bitstring of same length.
Ananth and Behera consider the simultaneous version of this task, that is, assuming that
(x1, x2) are simultaneously unpredictable given (f(x1), f(x2)) (in the same sense as our
definitions above), then x1 · r1 and x2 · r2 are simultaneously indistinguishable from two
random strings — where the pairs (x1, x2), (r1, r2), and (b1, b2), are sampled from different
types of distributions (uniform or identical), similarly as in our case — and they finally
describe two conjectures. Note that, as there is a construction of compute-and-compare
obfuscation from Coladangelo, Liu, Liu, and Zhandry (2021) (based on iO and hardness of
LWE assumptions) that ultimately relies on the Goldreich-Levin theorem, we expect the
conjectures of Ananth and Behera, combined with iO and LWE assumptions, to imply our
conjectures.

5.8. Tokenized Signature in the Plain Model 121

B

C

C̃C1/Sim()

C̃C2/Sim()

|ψ⟩1

|ψ⟩2

b∗1

b∗2

Distinguishing Game

⇒

|ψ⟩1 B′

C ′

f1

f2

|ψ⟩2

y∗1

y∗2

Predicting Game

Figure 5.10: Contraposition of the conjectures: if B and C succeed in the simultaneous distin-
guishing task on the left with significant advantage over 1/2, then there exist B′ and C′ succeeding
in the simultaneous predicting task on the right with non-negligible probability. C̃C1 and C̃C2
represent the compute-and-compare obfuscation of CC1 and CC2 with the same random coins.

5.8 Tokenized Signature in the Plain Model

In this section, we present two new definitions for tokenized signature schemes, and
show that the construction of Coladangelo, Liu, Liu, and Zhandry (2021) satisfies these
constructions. Along the way, we present a new version of the direct product hardness
property of coset states.

5.8.1 Tokenized Signatures

Recall that a public-key signature scheme has a key generation KeyGen procedure that
generates a pair of keys: the verification key which is given to all parties, and allows for
verifying signatures with the Verify procedure, and the secret key that is used to sign
messages with the Sign procedure. A tokenized signature scheme is similar, except that
the secret key allows for generating quantum tokens | ⟩ — with an additional TokenGen
procedure — that can be used to sign only one message.

Weak and strong-unforgeability. Such a scheme has weak-unforgeability if no efficient
adversary can produce two valid (message, signature) pairs given a verification key, and
only one quantum token, such that the messages in the two pairs are different. We define
strong-unforgeability, analogously as for classical signature schemes. That is, we relax
the task mentioned above, and only ask the two pairs to be different. This means that
an adversary can produce a message with two different valid signatures to succeed. More

122 Chapter 5. Towards Unclonable Cryptography in the Plain Model

precisely, for all QPT adversary A, the following must hold:

Pr


Verify(vk,m∗1, sig∗1) = 1

∧
Verify(vk,m∗2, sig∗2) = 1

∧
(m1, sig1) ̸= (m2, sig2)

:
(m∗1, sig∗1,m∗2, sig∗2)← A(vk, | ⟩)
| ⟩ ← TokenGen(sk)
(sk, vk)← KeyGen(1λ)

 ≤ negl(λ)

Unclonable unforgeability. Motivated by the non-local scenario considered for other
unclonable primitives, we define the following unclonable unforgeability property for
tokenized signature schemes. We consider a scenario where non-communicating Bob and
Charlie want to share a single quantum token, in a way that allows both of them to
sign a message of their choice, even when this message is chosen after the token is split.
We capture this property with a game, played by a triple of adversaries Alice, Bob, and
Charlie, where a challenger first sends a verification key vk, together with a corresponding
signing token | ⟩, to Alice, who splits it — that is, she generates two states | ⟩∗1 and
| ⟩∗2 (possibly entangled) — and sends the first and second states to Bob and Charlie
respectively. Bob and Charlie are then given a random message to sign by the challenger,
and must return a valid signature for this message. Thus, we relate how well they perform
in the aforementioned task to the winning probability of this game, and, more importantly,
to the difference between this winning probability and the “trivial” winning probability of
this game. Here, the “trivial” winning probability is given by a strategy where Alice makes
a random guess on the challenge message, sign this message using her token, and sends
the signature to both Bob and Charlie. If her guess is correct, Bob and Charlie return the
signature and win the game; if it is not, they return a random vector as a signature and
lose the game almost with certainty.

Choosing the challenges. We directly see that, if the challenge messages are different,
then, conditioned on the scheme having weak unforgeability, we already know that Alice,
Bob, and Charlie cannot perform better than the trivial strategy. Indeed, otherwise, Alice
would be able to produce two valid (message, signature) pairs with different messages,
which is ruled out by the weak unforgeability property. Thus, we only consider the case
where the challenger messages are the same. We propose two different ways of choosing the
challenges. The first one — the search fashion — simply consists in sampling a message
uniformly at random, and to send it to Bob and Charlie as the challenge. The second one

— the decision fashion — is defined similarly as in the IND-CPA security of an encryption
scheme. Alice, after she receives the quantum token and the verification key, is asked to
send the challenger two messages of her choice. The challenger then samples uniformly at
random one of these messages, and sends it to Bob and Charlie as the challenge. In the
following, we consider a tokenized signature scheme for single-bit message. Note that in
this case, the two ways of choosing the challenges are actually equivalent.

5.8.2 Definition
We formally define unclonable unforgeability of a tokenized signature scheme for single-bit
message space below.

Define the following game, parameterized by a security parameter λ, and between a
challenger and a triple of adversaries (A,B, C). During the game, B and C are not allowed

5.8. Tokenized Signature in the Plain Model 123

Challenger
(sk, vk)← KeyGen(1λ)

| ⟩ ← TokenGen(sk)

m←$ {0, 1}

A
| ⟩ , vk

B
|ψ∗⟩1

m

sig∗1

C|ψ∗⟩2

m

sig∗2

Winning Condition:
Verify(vk,m, sig∗

1) = 1
∧

Verify(vk,m, sig∗
2) = 1

Figure 5.11: Unclonable unforgeability game for tokenized signatures for single-bit message space.
A tokenized signature scheme has unclonable unforgeability if no triple of adversaries can win
this game with non-negligible advantage over 1/2.

to communicate.

• Setup phase:

− The challenger samples (sk, vk)← KeyGen(1λ), and a message m ∈ {0, 1}.

− The challenger computes | ⟩ ← TokenGen(sk).

− The challenger sends | ⟩ and vk to A.

• Splitting phase:

− A prepares a bipartite state | ⟩∗12.

− A sends | ⟩∗1 to B, and | ⟩∗2 to C.

• Challenge phase: The challenger sends m to both B and C.

Let sig∗1 denotes the output of B, and sig∗2 denotes the output of C. A, B, and C win the
game if Verify(vk,m, sig∗1) = 1 and Verify(vk,m, sig∗2) = 1. We then say that a tokenized
signature scheme has unclonable unforgeability if no adversaries can win this game with
probability significantly greater than 1/2. That is, if for all triple of QPT adversaries
(A,B, C):

Pr


Verify(vk,m, sig∗1) = 1

∧
Verify(vk,m, sig∗2) = 1

:

sig∗1 ← B(| ⟩∗1 ,m), sig∗2 ← C(| ⟩
∗
2 ,m)

| ⟩∗12 ← A(| ⟩ , vk)
| ⟩ ← TokenGen(sk)
m←$ {0, 1}
(sk, pk)← KeyGen(1λ)

 ≤
1
2 + negl(λ)

We provide an illustration of this security property in Figure 5.11.

124 Chapter 5. Towards Unclonable Cryptography in the Plain Model

5.8.3 Construction
We present in the following the tokenized signature construction of Coladangelo, Liu,
Liu, and Zhandry (2021). This construction relies on coset states and roughly works as
follows. A secret key consists in a random coset state’s description, and the corresponding
verification key is the associated iO-obfuscated membership programs. Generating a
quantum token for a secret key (A, s, s′) then consists in preparing and returning the
coset state |As,s′⟩. To sign a single-bit message m, one measures the quantum token in
the rectilinear basis if m = 0, or in the diagonal one if m = 1. The signature is the
measurement outcome: a vector in the regular or dual coset, depending on m. Finally,
verifying a signature consists in checking whether it belongs to the coset corresponding to
the message, which can be performed with the membership programs. We present the
construction formally in construction 18.

Construction 18: Tokenized Signature Scheme [CLLZ21]
Let n = poly(λ).

KeyGen(1λ) :

− Sample an n-long random coset state’s description (A, s, s′).

− Generate the corresponding membership programs PA+s, and PA⊥+s′ .

− Return (A, s, s′) as the secret key, and the obfuscated membership
programs (P̂A+s, P̂A⊥+s′) as the public key.

TokenGen(A, s, s′) : Prepare and return |As,s′⟩.

Sign(|As,s′⟩ ,m) :

− Apply H⊗n to |As,s′⟩ if m = 0. Otherwise, leave the state unchanged.
Let | ′⟩ denotes the resulting state.

− Measure | ′⟩ in the rectilinear basis, and return the outcome.

Verify((P̂A+s, P̂A⊥+s′),m, sig) :

− If m = 0: return P̂A+s(sig).

− If m = 1: return P̂A⊥+s′(sig).

The correctness of this scheme follows immediately from the functionality preserving
property of iO-obfuscation, and the fact that measuring a coset state in the rectilinear
(resp. diagonal) basis yields a vector in the regular (resp. dual) coset.

5.8.4 Direct Product Hardness with Identical Basis
To prove the weak-unforgeability of this construction, Coladangelo, Liu, Liu, and Zhandry
(2021) leverage the direct product hardness of coset states, and the proof follows immedi-
ately. This property does not give us strong-unforgeability however: we need to prove a
variant of it, that we name direct product hardness with identical basis. In this variant,
the adversary Alice is still given a random coset state, but instead of having to return two

5.8. Tokenized Signature in the Plain Model 125

Challenger
(A, s, s′)←$

A
|As,s′⟩

v, w

Winning Condition:
v, w ∈ A+ s ∧ v ̸= w

∨
v, w ∈ A⊥ + s′ ∧ v ̸= w

Figure 5.12: Direct product hardness with identical basis game for coset states. (A, s, s′) is
a random n-long coset state’s description. No adversary wins this game with non-negligible
probability in n.

vectors, respectively in the regular and dual cosets, she can return two vectors in the coset
of her choice (regular or dual), as long as they are different. We illustrate this security
notion in Figure 5.12.

As with the other coset states properties, we show that this task remains hard when
the adversary is given polynomial queries to a membership oracle. We also prove a
computational version of this game, where the adversary is computationally bounded, and
given iO-obfuscation membership programs for the regular and dual cosets.

We give below high-level proofs of the statistical and computational versions. These
proofs follow the structure of the ones of Coladangelo, Liu, Liu, and Zhandry (2021), with
a significant modification in the computational one.

Statistical version. The proof is based on a result of Ben-David and Sattath (2023)
that states that no adversary, given a subspace state |A⟩, can output two non-zero vectors
v ≠ w, both in A or in A⊥. Our statistical property follows easily, as given |A⟩, one can
sample two random vectors s and s′, and prepare the state |As,s′⟩, allowing to perfectly
simulate an adversary for our coset state game. Then, it suffices to subtract s (or s′) from
this adversary’s output to obtain two different non-zero vectors in A (or in A⊥).

Remark 4. The same proof idea works when the adversary is provided with oracle access
(limited to a polynomial number of queries) to membership programs for regular and dual
cosets.

Computational version. The proof of the computational version aims to show that
obfuscated membership programs do not give significant advantage to an efficient adversary
In a nutshell, it consists in proving that the task of finding two different vectors, both in
the regular or dual coset, given an n-long coset state and obfuscated membership programs,
is equivalent of finding such a pair of vectors given only an n/4-long coset state.

Replacing membership programs. In the first part of the proof, we show that
replacing an obfuscated program for the coset A+ s by one for the coset B+ s — where B
is a random subspace of dimension 7n/8, such that A ⊂ B — does not change the winning
probability of any adversary. This comes from iO-obfuscation, as these two programs are
functionally equivalent on average. Indeed, the only difference occurs when the program
is evaluated on a vector in B \ A, which can only happen with negligible probability as
this set is sparse in Fn2 . Using iO property again, we show that the latter program can be
unnoticeably replaced by an obfuscated membership program for the coset B + t — where
t is the sum of s and a random vector in B — as B + t and B + s are the same coset.
Applying the same arguments to the second membership program (for the dual coset), we

126 Chapter 5. Towards Unclonable Cryptography in the Plain Model

show that this program can be replaced by an obfuscated membership program for the
coset C⊥ + t′, where C is a random subspace of smaller dimension such that C ⊂ A, and
t′ is the sum of s′ and a random vector in C.

Ruling out a trivial attack. If we keep using the same proof structure as the one of
Coladangelo, Liu, Liu, and Zhandry (2021), the next step would be to show that we can
actually send B,C, t, t′ in the clear to the adversary, without harming the hardness of the
game. However, this argument does not work in our settings. Indeed, when B and C are
given in the clear to the adversary, the latter can apply the following trivial strategy to
win the game. First they measure the coset state in the rectilinear basis to obtain a vector
v in A. Then, set w = v + uC where uC is any non-zero vector in C. As C is a subset of
A, the vector w belongs to A, hence (v, w) is a valid answer for the game.

We overcome this issue by showing that, if an adversary wins the last hybrid — in
which they are given obfuscated membership programs for cosets B + t and C⊥ + t′ —
with non-negligible probability, then they can also win a variant of this hybrid where the
winning condition asks the pair of vectors (v, w) to be such that v − w does not belong to
C or B⊥. This is done by leveraging a lemma proved by Shmueli (2022b), which, when
applied to our settings, roughly states that an adversary cannot consistently return a pair
of vectors (v, w) such that v −w is in C, and has to “miss” the subspace C, that is return
(v, w) such that v − w is in A \ C with non-negligible probability. Note that a strategy
similar as the one above can be applied to return two different vectors in C⊥ + t′. We
prevent this strategy analogously by asking the pair of vectors not to belong to B⊥.

This now allows us to send B,C, t, t′ in the clear, as the aforementioned trivial strategies
no longer produce a valid pair of vectors.

Sending B and C in the clear. We justify that B,C, t, t′ can be sent in the clear by
adapting the arguments of Coladangelo, Liu, Liu, and Zhandry (2021). We can assume
without loss of generality that B is the subspace of vectors whose last n/8 entries are zero,
and C is the subspace of vectors whose last 7n/8 entries are zero. With such subspaces, A
is now a random subspace of vectors whose last 7n/8 entries are 0, and whose first n/8
entries are free. Note now that given a uniformly random coset state |Ã, s̃, s̃′⟩, for the
ambient space F3n/4

2 , and where Ã is of dimension 3n/8, one can prepare a coset state
|As,s′⟩ where A has the aforementioned constraints on the entries. This is done by setting
|As,s′⟩ = |Iŝ,ŝ′⟩ ⊗ |Ã, s̃, s̃′⟩ ⊗ |̊s⟩, where I is the identity matrix of Fn/8

2 , and s̃, s̃′, s̊ are
random vectors in Fn/8

2 . The resulting coset state |As,s′⟩ is a uniformly n-long random
coset state, subject to the last 7n/8 entries of its vectors are 0, and the first n/8 are
free. Following these observations, we reduce the task of succeeding in the hybrid where
B,C, t, t′ are given in clear — considering the ambient space Fn2 , to the task of returning
a pair of different vectors (v, w), both in the regular or in the dual coset, considering the
ambient space F3n/4

2 .

Chapter

6
Semi-Quantum Unclonable
Cryptography

In this chapter, we present a remote state preparation for coset states, and show how to
use it in a plug-and-play manner in existing unclonable primitive to obtain semi-quantum
versions of these primitives. This chapter is based on our following work: Chevalier,
Hermouet, and Vu (2023). We provide some supplementary materials for this chapter in
Appendix B.

Chapter content
6.1 Introduction . 127
6.2 Delegating Preparation of Coset States — A First Idea Based

on Homomorphic Encryption 128
6.2.1 Remote Coset State Preparation 128
6.2.2 A Protocol Based on Quantum Fully Homomorphic Encryption 130

6.3 Self-Testing Protocol for BB84 States 133
6.3.1 Extended Noisy Trapdoor Claw-Free Function 133
6.3.2 Committing Using Claw-Free and Injective Functions 134
6.3.3 Self-Testing and Remote Preparation of BB84 States 135

6.4 Self-Testing Coset States . 138
6.4.1 Test Round for Coset States . 139
6.4.2 Self-Testing Protocol for Coset States 141

6.5 Remote Coset State Preparation 142
6.5.1 Hiding a Coset State Round Among BB84 Rounds 142
6.5.2 Remote Coset States Preparation for Coset States 142

6.6 Semi-Quantum Copy-Protection 145
6.6.1 Semi-Quantum Copy-Protection of Point Functions 146
6.6.2 Construction . 147

6.1 Introduction
Quantum technology is still at an early stage of its existence, and despite promising
advances, a world where everyone owns their own quantum computer, and can communicate
through quantum channels seems very distant. Instead, we can think of a closer world,

128 Chapter 6. Semi-Quantum Unclonable Cryptography

with a few “quantum parties” having access to quantum computers, and where most of
the people are classical, and can only communicate through classical channels.

One question is then how it is possible to make the most of quantum capabilities with
such strong restrictions. In particular, would it be possible to use unclonable cryptography,
where parties are exchanging quantum states with various useful properties ? We propose
a positive answer to this question, by constructing semi-quantum unclonable cryptography
protocols, where the party who — in the quantum version — sends the quantum program
(or key, token, etc...) is classical and instructs the receiver on how to construct such a
quantum program, while preserving the unclonability of the protocol.

The content of this chapter is based on one paper (Chevalier, Hermouet, and Vu
(2023)). In this chapter, we present our remote coset states preparation protocol, which
we then use in a plug-and-play manner to construct so-called semi-quantum versions
of unclonable cryptographic protocols based on coset states. In order to construct our
remote coset states preparation protocol, we start with an idea of Shmueli (2022a) to use
quantum fully homomorphic encryption to delegate preparation of coset states. As this
delegating preparation does not preserve the monogamy-of-entanglement of coset states,
we combine it with the self-testing and remote state preparation protocols for BB84 states
of Gheorghiu, Metger, and Poremba (2022) and achieve our purpose.

This chapter is articulated as follows. We first present in Section 6.2 the protocol of
Shmueli, and show why it does not fit our purpose. Then, in Section 6.3, we present the
remote state preparation protocol of Gheorghiu, Metger, and Poremba. In Sections 6.4
and 6.5, we show how to combine these protocols to obtain a self-testing protocol for coset
states, and based on that, a remote coset state preparation. Finally, in Section 6.6, we
discuss semi-quantum unclonable cryptography, by defining semi-quantum copy-protection,
and providing a construction based on our remote coset state preparation.

6.2 Delegating Preparation of Coset States — A First
Idea Based on Homomorphic Encryption

Our goal in this chapter is to construct a remote coset state preparation protocol, that is
a protocol in which a classical verifier instructs a quantum prover on how to construct a
coset state. Furthermore, this protocol must preserve the unclonability of coset states, in
particular the direct product hardness and monogamy-of-entanglement properties. Shmueli
(2022a) presented a protocol to delegate preparation of coset states. However, as he pointed
out, there is a simple attack on this protocol, and it does not preserve direct product
hardness, nor monogamy-of-entanglement. In this section, we first define remote coset state
preparation, then present Shmueli’s protocol. We finally describe the attack mentioned
above, showing that this protocol is not sufficient for our purpose.

6.2.1 Remote Coset State Preparation
We refer the reader to Section 4.2.2 for a detailed presentation of coset states. We define
remote coset state preparation as an interactive protocol between two parties, that we call
the verifier and the prover. In the end of the interaction, when the parties are honest, the
verifier holds a coset state’s description, and the prover the corresponding coset state. We
want such a protocol to preserve direct product hardness and monogamy-of-entanglement
properties of coset states. This is captured by two “semi-quantum games”, one for each

6.2. Delegating Preparation of Coset States — A First Idea Based on
Homomorphic Encryption 129

property, similar to their original versions (Section 4.2.2), except that we replace the setup
phase — in which the challenger samples the coset and sends it to the adversary — by
the remote coset state preparation protocol. For technical reasons — that we explain in
subsequent sections — our final protocol prepares a polynomial number κ of coset states.
The definition is then adapted: in the semi-quantum games for direct product hardness
and monogamy-of-entanglement, the adversaries receive κ coset states from the remote
coset state preparation protocol, and must return a valid answer for each state to win the
game.
Definition 38 (Remote Coset State Preparation Protocol). Let λ a security parameter,
and n, κ ∈ N. A remote coset state preparation protocol is an interactive protocol
RCP⟨V(1λ),P(1λ)⟩ between a PPT verifier P, and a QPT prover P, with the following
properties:

•
(

(Ai, si, s′i)i∈J1,κK,
(
P̂Ai+si

, P̂A⊥
i +s′

i

)
i∈J1,κK

, |ψ⟩
)
← RCP⟨V(1λ),P(1λ)⟩. On input a

security parameter, the verifier and the prover exchange a series of classical mes-
sages. After this interaction, the verifier outputs κ n-long coset state’s descriptions
(Ai, si, s′i)i∈J1,κK, and the prover the corresponding quantum state |ψ⟩. Both also
output iO-obfuscated membership programs P̂Ai+si

and P̂A⊥
i +s′

i
for every coset state

description.
In the following, we simply write

(
(Ai, si, s′i)i∈J1,κK, |ψ⟩

)
← RCP⟨V(1λ),P(1λ)⟩, to describe

an execution of this protocol, when clear from the context.
In addition, we ask a remote coset state preparation to satisfy the following properties.

Correctness. The quantum state returned by an honest prover (that is, a prover who
follows the protocol) must be negligibly close to the κ coset states corresponding to the
verifier’s descriptions. More precisely,

Pr
[
|ψ⟩ ≈

κ⊗
i=1
|Ai,si,s′

i
⟩ :

(
(Ai, si, s′i)i∈J1,κK, |ψ⟩

)
← RCP⟨V(1λ),P(1λ)⟩

]
≥ 1− negl(λ)

Where ≈ is defined in Section 4.2.2.

Monogamy-of-entanglement and direct product hardness. We do not ask the
quantum state output by any (efficient) malicious prover to be close to the expected one,
conditioned on acceptance. Rather than that, we ask that no efficient cheating strategy
in the remote coset state preparation protocol allow a prover to get sufficiently enough
information on the coset state, allowing them to win the direct product hardness, or the
monogamy-of-entanglement game with non-negligible probability. More precisely, we ask
that no efficient prover win the following two games with non-negligible probability.
Theorem 22 (Semi-Quantum Direct Product Hardness). The direct product hardness
must be preserved when the preparation and sending of coset states is replaced by the
remote coset state preparation. That is, for any QPT adversary A:

Pr


∀ i ∈ J1, κK
v∗i ∈ Ai + si

∧
w∗i ∈ A⊥i + s′i

:
v∗, w∗ ← A(|ψ⟩ , (P̂Ai+si

, P̂A⊥
i +s′

i
)i∈J1,κK)(

(Ai, si, s′i)i∈J1,κK, |ψ⟩
)
← RCP⟨V(1λ),A(1λ)⟩

 ≤ negl(λ)

where v∗ = (v∗1, . . . , v∗κ), and w∗ = (w∗1, . . . , w∗κ).

130 Chapter 6. Semi-Quantum Unclonable Cryptography

Theorem 23 (Semi-Quantum Monogamy-of-Entanglement). Define the following game,
between a challenger V and a triple of adversaries A, B, C, and parametrized by a security
parameter λ, and a remote coset state preparation protocol RCP. During the game, B and
C are not allowed to communicate.

• Setup phase:

− The challenger and A execute the remote coset state preparation protocol(
(Ai, si, s′i)i∈J1,κK, |ψ⟩

)
← RCP⟨V(1λ),A(1λ)⟩.

• Splitting phase:

− A prepares a bipartite quantum state |ψ∗⟩12.1

− A sends |ψ∗⟩1 to B and |ψ∗⟩2 to C.

• Challenge phase: The challenger sends (A1, . . . , Aκ) to both B and C.

Let v∗ = (v∗1, . . . , v∗κ) denotes the output of B, and w∗ = (w∗1, . . . , w∗κ) denotes the
output of C. They win if and only if v∗i ∈ Ai + si and w∗i ∈ A⊥i + s′i for all i ∈ J1, κK.

The semi-quantum monogamy-of-entanglement property states that no triple of efficient
adversaries can win this game with non-negligible probability. In other words, for any
triple of QPT algorithms A, B, and C,

Pr


∀ i ∈ J1, κK
v∗i ∈ Ai + si

∧
w∗i ∈ A⊥i + s′i

:
v∗ ← B(|ψ∗⟩1 , (Ai)i∈J1,κK), w∗ ← C(|ψ∗⟩2 , (Ai)i∈J1,κK)
|ψ∗⟩12 ← A(|ψ⟩ , (P̂Ai+si

, P̂A⊥
i +s′

i
)i∈J1,κK)(

(Ai, si, s′i)i∈J1,κK, |ψ⟩
)
← RCP⟨V(1λ),A(1λ)⟩

 ≤ negl(n)

We provide an illustration of this theorem in Figure 6.1.

6.2.2 A Protocol Based on Quantum Fully Homomorphic En-
cryption

We present the idea of Shmueli (2022a) for delegating coset states preparation. We first
briefly introduce quantum fully homomorphic encryption.

Quantum fully homomorphic encryption. A fully homomorphic encryption scheme
is a public key encryption scheme with an additional procedure allowing evaluation of a
ciphertext on any (polynomial-size) circuit, given the public key. More precisely, when run
on an encryption of a message m and a circuit C, this procedure returns an encryption of
C(m).

For our purpose, we actually need a quantum fully homomorphic encryption scheme,
where the circuits can be quantum. We consider schemes with the following structure.
They are composed of a key generation procedure KeyGen that outputs a secret and a
public key, an encryption procedure Enc for classical messages, and a decryption procedure
Dec. So far, everything is classical. The quantum part comes with the evaluation procedure

1Similarly to the previous chapters, the quantum state prepared by the adversary can be a mixed state,
contrarily to what the notation could suggest. In the rest of this chapter, for sake of simplicity, we abuse
the notations and write quantum states prepared by adversaries with pure state notations (e.g. |ψ∗⟩12).

6.2. Delegating Preparation of Coset States — A First Idea Based on
Homomorphic Encryption 131

V ARCP

B
|ψ∗⟩1

(Ai)i ∈ J1, κK

v∗

C|ψ∗⟩2

(Ai)i ∈ J1, κK

w∗

Winning Condition:
∀ i ∈ J1, κK
v∗

i ∈ Ai + si

∧
w∗

i ∈ A⊥
i + s′

i

Figure 6.1: Semi-quantum monogamy-of-entanglement game for a remote coset state preparation
protocol. This property states that no efficient adversaries win this game with non-negligible
probability in λ.

Eval, that takes as input a public key, a state |ψ⟩(x,z) = XxZz |ψ⟩ (quantum one-time pad
of |ψ⟩ with keys x and z), the encryption of the keys ctx = Enc(pk, x) and ctz = Enc(pk, z),
and a quantum circuit C. The procedure returns |ψ′⟩(x

′,z′): a quantum one-time padded
evaluation of C(|ψ⟩) with some keys x′ and z′, and ctx′ and ctz′ : the encryption of these
two keys. Whenever we use the evaluation procedure on the encryption of a classical
message, we abuse the notation and simply write Eval(pk,m(x), ctx,C), as applying or not
a Z gate is equivalent. We refer the reader to Definition 18 for a more detailed definition.

The protocol. We are now ready to describe the protocol. The verifier first samples
a random subspace A ⊂ Fλ2 of dimension λ/2 (where λ if a security parameter for the
protocol). In the following, we use indifferently A to denote the subspace, or a matrix
whose columns form a basis of the subspace. Then, they send a public key pk; a one-time
pad masking of A with key x, A(x), as well as an encryption of x with key pk, ctx, to
the prover. The prover then use the evaluation procedure on these ciphertexts with a
quantum circuit C that, on input a matrix A, returns the associated subspace state |A⟩.
The outcome of this evaluation is

(
|A⟩(s,s

′) , cts, cts′

)
. The prover then keeps |A⟩(s,s

′) and
sends cts and cts′ to the verifier. The latter decrypts these two ciphertexts to obtain s
and s′, and finally outputs (A, s, s′) as the coset state’s description. Finally, recall that a
coset state is in fact a quantum one-time padded subspace state. The prover returns the
state |A⟩(s,s

′), which is |As,s′⟩. We write it in a more formal way below.

Protocol 1: Remote Coset State Preparation [Shmueli22]
Let λ a security parameter, and n = poly(λ). Let ⟨KeyGen,Enc,Dec,Eval⟩ be a quantum
fully homomorphic encryption scheme, as defined above. This protocol is between a
PPT verifier, and a QPT prover.

Verifier’s setup phase:

132 Chapter 6. Semi-Quantum Unclonable Cryptography

− The verifier samples a random subspace A ⊂ Fn2 , of dimension n/2.

− The verifier samples a pair of keys (sk, pk)← KeyGen(1λ).

− The verifier computes A(x): the matrix A one-time padded with a
random bitstring x.

− Finally, the verifier sends pk, A(x) and ctx = Enc(pk, x) to the prover.

Prover’s evaluation phase:

− The prover computes
(
|A⟩(s,s

′) , cts, cts′

)
← Eval(pk, A(x), ctx).

− The prover sends cts, cts′ to the verifier.

− The prover returns |A⟩(s,s
′) = |As,s′⟩.

Verifier’s decryption phase:

− The verifier computes s← Dec(sk, cts) and s′ ← Dec(sk, cts′).

− The verifier returns (A, s, s′).

The attack. This protocol achieves correctness, as honest parties receive a coset state’s
description, and the corresponding coset state respectively.2 This protocol unfortunately
does not preserve the direct product hardness property, and hence does not preserve the
monogamy-of-entanglement property either. We present a simple attack that allows a
malicious prover to win the semi-quantum version of direct product hardness game with
this protocol. When receiving (A(x), ctx), the prover generates two circuits, Cy and C′y′ —
parametrized by random bitstrings y, y′ ←$ {0, 1}n/2 — that, on input A, return Ay and
A⊥y respectively. Evaluating (A(x), ctx) on such circuits yields a vector v = Ay + s for the
first circuit, and a vector w = A⊥y′ + s′ for the second, where s and s′ are the one-time
pad’s keys. The evaluation also yields the encryption of s and s′, that the prover can
send to the verifier. The verifier then obtain the coset state’s description (A, s, s′), and
the prover holds v ∈ A + s, and w ∈ A⊥ + s′, allowing them to win the direct product
hardness with probability 1.

This attack is possible because the verifier does not check whether the prover honestly
perform the evaluation, and actually, we do not have any way of verifying classically
this evaluation. Interestingly however, the prover does not have the state |As,s′⟩ in their
registers when applying the cheating strategy, and actually they cannot have information
on it due to the semantic security of the quantum fully homomorphic encryption scheme.
Based on this observation, our idea is to construct and use a self-testing protocol for coset
states, whose role is to ensure that the prover does have a coset state corresponding to the
vectors they send to the verifier in their registers. Our hope is that no malicious prover
can cheat in the resulting protocol, while succeeding in the self-testing protocol.

2Note that, although the parties do not output obfuscated membership programs in this protocol, it is
easy to extend it, simply by letting the verifier generate the programs and send them to the prover.

6.3. Self-Testing Protocol for BB84 States 133

6.3 Self-Testing Protocol for BB84 States
Our goal is to construct a self-testing protocol for coset states, and to combine it with the
“unsecure” remote preparation protocol of the previous section to achieve “secure” remote
coset state preparation. Gheorghiu and Vidick (2019) proposed a self-testing protocol for
a single BB84 state, and Gheorghiu, Metger, and Poremba (2022) extended it to handle a
polynomial number of BB84 states in tensor product. We described in Section 4.2.2 that
coset states and BB84 states share many similarities. In particular, an n-long BB84 state
is actually an n-long coset state. Our idea is then to use the protocols mentioned above
as starting point. In this section, we informally describe the protocols of Gheorghiu and
Vidick (2019) and Gheorghiu, Metger, and Poremba (2022).

6.3.1 Extended Noisy Trapdoor Claw-Free Function
The main ingredient of these protocols is the extended noisy trapdoor claw-free functions.
This consists in two indistinguishable families of functions: a family of noisy trapdoor
claw-free functions and a family of trapdoor injective functions — we will simply write
claw-free functions and injective functions in the following. We provide an informal
presentation of these families, and refer the curious reader to Mahadev (2018, Section 4)
for a detailed definition.

Claw-free functions. A family F of claw-free functions consists in pairs of injective
functions (f0, f1), both with domain X and codomain Y. There must exist an efficient
sampling procedure, that samples a pair of functions from F , along with a trapdoor for
these functions, that allows to efficiently invert them through a procedure InvF . That is,
for all triples (f0, f1, t), all bits b, and all images y in the support of fb:

InvF(t, b, y) = xb such that fb(xb) = y

In the following, we write (f0, f1, t)←$ F to denote an execution of this sampling procedure.
Whenever we do not need the trapdoor, we omit it and simply write (f0, f1)←$ F . For
each pair, f0 and f1 have the same support, meaning that every image y in this support
has exactly one preimage x0 for f0, and one preimage x1 for f1. This pair (x0, x1) is called
a claw for y. Such family is claw-free if it is not possible to efficiently come up with such a
claw, that is:

Pr
[
f0(x0) = f1(x1) : (x0, x1)← A(f)

f = (f0, f1)←$ F

]
= negl(λ)

A family of claw-free functions must also satisfy an adaptive hardcore bit property: it must
not be possible to efficiently find (x0, d, c) or (x1, d, c) satisfying the equation d·(x0⊕x1) = c

— where the x0 and x1 of the equation form a claw.

Pr

d · (x0 ⊕ x1) = c :
x1−b = f−1

1−b(fb(xb))
(b, xb, d, c)← A(f)
f = (f0, f1)←$ F

 = negl(λ)

Injective functions. The main difference between claw-free functions and injective
functions is that the pairs of functions in the latter have disjoint supports. A family G
of injective functions consists of pairs of injective functions (g0, g1), both with domain X

134 Chapter 6. Semi-Quantum Unclonable Cryptography

and codomain Y. There also must exist an efficient sampling procedure, that samples
a pair of functions from G, along with a trapdoor for these functions. As the supports
of g0 and g1 are disjoint, the efficient inverting procedure InvG is slightly different from
InvF . More precisely, for all triples (g0, g1, t), and all images y in the support of g0 or
g1, InvG(t, y) yields the unique pair (b, xb) such that fb(xb) = y. Similarly to claw-free
functions, we write (g0, g1, t)←$ G or simply (g0, g1)←$ G to denote an execution of this
sampling procedure.

Extended noisy trapdoor claw-free functions. An extended noisy trapdoor claw-free
function family is then a pair of claw-free and injective functions families (F ,G) as defined
above, associated with efficient procedures to sample either in F or in G. Furthermore, it
must be computationally infeasible to tell apart a pair sampled from F , from one sampled
from G.

{(f0, f1) : (f0, f1)←$ F} ≈c {(g0, g1) : (g0, g1)←$ G}

Mahadev (2018) showed how to construct such a family assuming the hardness of the
LWE problem.

6.3.2 Committing Using Claw-Free and Injective Functions
In the remote state preparation protocol we describe in the next subsection, the prover is
asked to pass a series of tests, in which they have to “commit” on a qubit, and measure it
and a specific way. We describe in this subsection what committing on a qubit means in
this context, and what interesting measurements the prover can perform on a committed
qubit.

Claw-free functions. Assume the prover is given a pair of claw-free functions (f0, f1).
Consider the unitary operator U defined as U |b⟩ |x⟩ |y⟩ = |b⟩ |x⟩ |y ⊕ fb(x)⟩ — we call the
three registers the bit, preimage, and image registers respectively. Running this operator
with |+⟩ as the bit register, |+ · · ·+⟩ as the preimage one, and |0⟩ as the image one, results
in a superposition over the images in the supports of f0 and f1 in the image register, and
the associated preimages in the preimage one. If the prover performs this operation, and
then measures the image register and obtains y as the outcome, the bit and preimage
registers collapse to

|0⟩ |x0⟩+ |1⟩ |x1⟩

where (x0, x1) is a claw for y.3 This procedure is called a commitment using the claw-free
functions (f0, f1).

Measuring the collapsed bit and preimage registers in the computational basis yields
a pair (b, xb) where fb(xb) = y, while measuring them in the Hadamard basis yields
(d · (x0 ⊕ x1), d). To see that, note that measuring the preimage register in the Hadamard
basis, and obtaining d collapses the bit register to the following state:

(−1)d·x0 |0⟩+ (−1)d·x1 |1⟩
=(−1)d·x0

(
|0⟩+ (−1)d·(x0⊕x1) |1⟩

)
=± H |d · (x0 ⊕ x1)⟩

3For sake of readability, we omit the normalization factor in this part.

6.3. Self-Testing Protocol for BB84 States 135

Note that while the prover can choose to learn either (b, xb) or (d · (x0 ⊕ x1), d), they
cannot learn both due to the adaptive hardcore bit property of claw-free functions.

Injective functions. The commitment using a pair of injective functions (g0, g1) is done
in the same way as with the claw-free ones. After measuring of the preimage register, the
two first registers collapse to

|b⟩ |xb⟩

such that gb(xb) = y.
Measuring this state in the computational basis yields a pair (b, xb) such that fb(xb) = y.

Note that, as the two registers are in a tensor product, measuring the bit register in the
computational basis will always return this b, regardless on which measurement we perform
on the preimage register. This will be handy in the following.

6.3.3 Self-Testing and Remote Preparation of BB84 States
The remote state preparation protocols of Gheorghiu and Vidick (2019) and Gheorghiu,
Metger, and Poremba (2022) both use the same idea: executing a number of self-testing
protocols, before finally asking the prover to prepare their state. In a nutshell, a self-testing
protocol is an interactive protocol in which, after having exchanged a series of classical
messages (some tests) with a prover, a verifier is convinced that the prover’s register at
the beginning of the protocol contains a particular quantum state. The verifier is in fact
convinced that the prover has this state, up to a local isometry, that is, an (invertible)
operation acting only on this state. This is actually impossible to prevent, as even if the
verifier sends the quantum state directly to the prover, the latter can always perform such
isometry and still succeeds in every subsequent tests. Note also that, in such a protocol,
the prover’s state is destroyed in the process.

In the protocol of Gheorghiu and Vidick (2019), the verifier instructs a prover on how
to construct a BB84 state in a blind and verifiable way. The idea of this protocol is to run
a series of test rounds, that act as self-testing and whose purpose is to ensure that the
prover behaves honestly. Once the verifier is convinced that the prover behaves honestly,
they run a preparation round, in the end of which the prover holds a BB84 state, and the
verifier holds its description. Importantly, a malicious prover cannot distinguish a test
round from a preparation round, meaning that they cannot know when to behave honestly
to pass the tests, and when to cheat in the state preparation. We describe these two types
of rounds in the following.

Preparation round. In a preparation round, the verifier starts by sampling a random
bit θ, then samples a pair of injective functions, or a pair of claw-free functions, with
their respective trapdoor, depending on whether θ = 0 or 1. The verifier then sends this
pair to the prover and asks them to perform the commitment mentioned above, and to
send them the corresponding image y. Note that the prover does not have to know —
and actually cannot know — whether they receive an injective pair or a claw-free pair
to perform the commitment. The verifier then asks the prover to measure the preimage
register in the Hadamard basis, and to send them the outcome d. The verifier inverts
y with the trapdoor, obtaining (b, xb) or (x0, x1) depending on θ, then computes v = b
if θ = 0, or v = d · (x0 ⊕ x1) if θ = 1. Finally, the prover returns their bit register as
the prepared state, and the verifier returns (v, θ) as its description. From the previous

136 Chapter 6. Semi-Quantum Unclonable Cryptography

subsection, this protocol has correctness, meaning that an honest prover’s bit register is
|vθ⟩ (up to a global phase).

Test round. A test round begins in the same way as a preparation one: the verifier
sends a random pair of claw-free or injective functions to the prover, who performs a
commitment and sends back y. At this point, two cases can happen, either the verifier
decides that the round is a preimage round, in which case they ask the prover to measure
their bit and preimage registers in the computational basis, and to send the outcomes
(b, d). Or they decide it is a Hadamard round, in which case they ask the prover to measure
the preimage register in the Hadamard basis and to send the outcome d as before, and
then to measure the bit register in the computational basis if θ = 0, or in the Hadamard
one if θ = 1, and to send the outcome.4 The verifier finally performs a consistency check
depending on the type of round they picked. In the preimage round case, the verifier
checks whether fb(xb) = y, where xb is obtained by inverting y. In the Hadamard one, the
verifier checks the same if θ = 0, and if θ = 1, the verifier checks whether d · (x0 ⊕ x1) = v,
where (x0, x1) is obtained by inverting y. These consistency checks ensure that the prover
is not trying to cheat in the protocol.

Multi qubits test round. As we need it later on, we formally describe below an n-fold
parallel repetition of the test round described above, using either only claw-free pairs, or
injective pairs for all n instances. Each instance of this protocol is slightly different from
the single-qubit test-round protocol. Indeed, we assume that an honest prover holds n
qubits |±⟩ in the beginning of the protocol, to be used as their bit registers, instead of |+⟩
qubits for the single qubit test round. More precisely, the n qubits are H |s′⟩ = ⊗n

i=1 H |s′i⟩,
and s′ is given as input to the verifier. These modifications are needed for our final remote
coset state preparation protocol, and do not modify the security (we speak here of rigidity)
of the self-testing protocol. Informally, this means the following. Consider an efficient
prover passing the test in this protocol with probability close to 1 Then, this prover’s
behavior is close to an honest prover’s behavior. We leave the proof of the rigidity of this
protocol in Appendix B.3.2.

This protocol’s description assume honest verifier and prover.

Protocol 2: Test Round for BB84 States
This is an interactive protocol between a PPT verifier, and a QPT prover.
Parameters: A security parameter λ, an integer n = poly(λ). A family of extended noisy
trapdoor claw-free functions (F ,G). A unitary U, parametrized by functions (h0, h1),
defined by U |b⟩ |x⟩ |y⟩ = |b⟩ |x⟩ |y ⊕ hb(x)⟩.
Inputs: The verifier is given as input a one-time pad key pair (s, s′) ∈ F2

n × F2
n. The

prover initially holds a quantum state |ϕ⟩. For an honest prover, |ϕ⟩ = H |s′⟩.

Setup:

− The verifier samples a bit θ ←$ {0, 1}.

− The verifier samples n pairs of functions and the corresponding trap-
doors (h0,i, h1,i, ti), from F if θ = 0, or from G if θ = 1.

4In practice, the verifier decides to perform a Hadamard round or a test round at random (with
probability 1/2 for each round type).

6.3. Self-Testing Protocol for BB84 States 137

− The verifier sends ((h0,i, h1,i))i∈J1,nK to the prover.

Commitment:

− For i ∈ J1, nK :
∗ The prover applies U (parametrized by (h0,i, h1,i)) to ϕi ⊗
|+ · · ·+⟩⟨·| ⊗ |0 . . . 0⟩⟨·|.a b

∗ The prover measures the third register. Let yi denotes the outcome,
and ϕ′i, ψ′i be the first and second registers after the measurement.

− The prover sends y1, . . . , yn to the verifier.

Round type:

− With probability 1/2, the verifier decides to perform a preimage round,
and with probability 1/2, the verifier decides to perform a Hadamard
round.

− The verifier sends the decided round type (“preimage round” or
“Hadamard round”) to the prover.

(Preimage round) - Measurements:

− The prover measures all ϕ′1, . . . , ϕ′n registers, and all ψ′1, . . . , ψ′1 registers
in the computational basis. Let b1, . . . , bn, and d1, . . . , dn, denote the
corresponding measurement outcomes.

− The prover sends these outcomes b1, . . . , bn, and d1, . . . , dn, to the
verifier.

(Preimage round) - Consistency check:

− For i ∈ J1, nK : The verifier checks whether hbi,i(di) = yi.

− The verifier aborts if any of the checks fail.

(Hadamard round) - Preimage registers measurements:

− The prover measures all ψ′1, . . . , ψ′n registers in the Hadamard basis.
Let d1, . . . , dn denote the corresponding outcomes.

− The prover sends d1, . . . , dn to the verifier.

− Let ϕ′′1, . . . , ϕ′′n be the bit registers after the measurements.

(Hadamard round) - Basis disclosure: The verifier sends θ to the prover.

(Hadamard round) - Bit registers measurements:

− The prover measures all bit registers ϕ′′1, . . . , ϕ′′n in the computational
basis if θ = 0, or in the Hadamard basis if θ = 1. In both case, let
v1, . . . , vn denote the corresponding outcomes.

− The prover sends v1, . . . , vn to the verifier.

138 Chapter 6. Semi-Quantum Unclonable Cryptography

(Hadamard round) - Consistency check:

− If θ = 0 :
∗ For i ∈ J1, nK :

· The verifier computes (b′i, xb′
i,i

)← InvG(ti, yi).
· The verifier checks whether bi = b′i.

− If θ = 1 :
∗ For i ∈ J1, nK :

· The verifier computes

x0,i ← Inv(ti, 0, yi),

x1,i ← Inv(ti, 1, yi).
· The verifier checks whether vi ⊕ s′i = di · (x0,i ⊕ x1,i).

− The verifier returns aborts if any of the checks fails.
aWe use the shorthand |x⟩⟨·| to denote |x⟩⟨x|.
bϕi denotes the i-th qubit of |ϕ⟩

We show in the following section how to adapt this protocol to handle coset states.

6.4 Self-Testing Coset States

In the protocol we described above, an honest prover initially holds a state |± · · · ±⟩ in
their register, and every qubit of this state is used as the bit register in a (slightly modified)
single qubit test round. We describe below what happens if we use an n-long coset state
as bit registers. More precisely, the i-th qubit of the coset state is used as the bit register
of the i-th commitment, and we measure all the bit registers in the same basis (that is, we
use either only claw-free functions, or only injective functions for all bit registers).

To see that, first remark that any i-th qubit of a coset state can be written — up to
reordering the registers — as

α0 |0⟩ |ψ0
i ⟩ + α1 |1⟩ |ψ1

i ⟩

Then, committing using this i-th qubit as the bit register (we still use |+ · · ·+⟩ as the
preimage register, and |0⟩ as the image register) yields an image y and collapses the whole
system on

{
|b⟩ |ψbi ⟩ |xb⟩ if the function pair is an injective one or
α0 |0⟩ |ψ0

i ⟩ |x0⟩+ α1 |1⟩ |ψ1
i ⟩ |x1⟩ if it is a claw-free one

where in the first line, (b, xb) is the inverse of y, and in the second one, (x0, x1) are the
claw for y.

Now, measuring the preimage register in the Hadamard basis (we only consider

6.4. Self-Testing Coset States 139

Hadamard round when using coset states) yields some d, and collapses the system to
|b⟩ |ψbi ⟩ if the function pair is an injective one or
α0 |0⟩ |ψ0

i ⟩ + (−1)d·(x0⊕x1)α1 |1⟩ |ψ1
i ⟩

= H (α0 |0⊕ ui⟩ |ψ0
i ⟩ + α1 |1⊕ ui⟩ |ψ1

i ⟩) if it is a claw-free one
(6.1)

where ui denotes d · (x0 ⊕ x1).
An important observation is that the state |ψbi ⟩ is the superposition of all n− 1 long

vectors x such that the vector (x1 . . . xi−1∥b∥xi . . . xn) belongs to A+s. A verifier receiving
the measurement outcome (vi)i of all the bit registers, measured in the computational
basis when the functions are injective, or in the Hadamard basis when they are claw-free,
can then perform the following checks. Assume a measurement is performed on all the
bit registers — in the computational basis when the functions are injective, or in the
Hadamard basis when they are claw-free — yielding a bit vi for each register i. Let
v = (v1, v2, . . . , vn). When the measurements are done in the Hadamard basis, we denote
u as (u1, u2, . . . , un), where each ui is the d · (x0 ⊕ x1) from Equation (6.1). Then, it is
clear from the observation and Equation (6.1) that such a vector v obtained by measuring
all the bit registers in the rectilinear basis (which corresponds to the first line of the
equation) is in A+ s, while one obtained by measuring them in the Hadamard basis (which
corresponds to the second line) is in A⊥ + s′ + u.

6.4.1 Test Round for Coset States
From the observations above, we can now define a test round for coset states. This round
is similar to the regular one we described in the last section. Assume that the prover holds
a coset state |As,s′⟩, and the verifier its description (A, s, s′) at the beginning of the round.
In a test round for coset states, the verifier only decides to perform Hadamard round, the
interaction between the prover and the verifier are then the same as the interaction in a
test round for BB84 states. The only modifications are that the honest prover uses the
coset state instead of a series of |±⟩ state as bit registers, and that the verifier applies
different consistency checks: if the pair of functions is an injective one, they check whether
the vector v returned by the prover is in A + s, and if the pair is a claw-free one, they
compute ui = d · (x0 ⊕ x1) by inverting the image y sent by the prover, and then check
whether v + u is in A⊥ + s′. We prove in Appendix B.3.3 that this protocol has rigidity,
similarly to protocol 2. That is, any prover passing the test with probability close to 1
must behave similarly to an honest prover.

We formally describe this test round for coset states below. This protocol’s description
assumes honest verifier and prover.

Protocol 3: Test round for Coset States
This is an interactive protocol between a PPT verifier, and a QPT prover.
Parameters: A security parameter λ, an integer n = poly(λ). A family of extended noisy
trapdoor claw-free functions (F ,G). A unitary U, parametrized by functions (h0, h1),
defined by U |b⟩ |x⟩ |y⟩ = |b⟩ |x⟩ |y ⊕ hb(x)⟩.
Inputs: The verifier is given an n-long coset state’s description (A, s, s′). The prover
initially holds a quantum state |ϕ⟩. For an honest prover, |ϕ⟩ = |As,s′⟩.

Setup:

140 Chapter 6. Semi-Quantum Unclonable Cryptography

− The verifier samples a bit θ ←$ {0, 1}.

− The verifier samples n pairs of functions and the corresponding trap-
doors (h0,i, h1,i, ti), from F if θ = 0, or from G if θ = 1.

− The verifier sends ((h0,i, h1,i))iJ1,nK to the prover.

Commitment:

− For i ∈ J1, nK :
∗ Let ϕi denotes the i-th qubit of |As,s′⟩.
∗ The prover applies U (parametrized by (h0,i, h1,i)) to ϕi ⊗
|+ · · ·+⟩⟨·| ⊗ |0 . . . 0⟩⟨·|.a

∗ The prover measures the third register. Let yi denotes the outcome,
and ϕ′i, ψ′i be the first and second registers after the measurement.

− The prover sends y1, . . . , yn to the verifier.

Round type: The verifier sends “Hadamard round” to the prover.

Preimage registers measurements:

− The prover measures all ψ′1, . . . , ψ′n registers in the Hadamard basis.
Let d1, . . . , dn denote the corresponding outcomes.

− The prover sends d1, . . . , dn to the verifier.

− Let ϕ′′1, . . . , ϕ′′n be the bit registers after the measurements.

Basis disclosure: The verifier sends θ to the prover.

Bit registers measurements:

− The prover measures all bit registers ϕ′′1, . . . , ϕ′′n in the computational
basis if θ = 0, or in the Hadamard basis if θ = 1. In both cases, let
v1, . . . , vn denote the corresponding outcomes.

− The prover sends v1, . . . , vn to the verifier.

Consistency check:

− Let v denotes the vector (v1, . . . , vn).

− If θ = 0 : The verifier checks that v ∈ A+ s.

− If θ = 1 :
∗ For i ∈ J1, nK : The verifier computes

x0,i ← InvF(ti, 0, yi),

x1,i ← Inv(ti, 1, yi),
ui = di · (x0,i ⊕ x1,i)

.

6.4. Self-Testing Coset States 141

∗ Let u denotes the vector (u1, . . . , un).
∗ The verifier checks that v + u ∈ A⊥ + s′.

− If the check does not pass, the verifier aborts.
aWe use the shorthand |x⟩⟨·| to denote |x⟩⟨x|.

6.4.2 Self-Testing Protocol for Coset States
Given this test round protocol for coset states, and the multi qubits one for BB84 states
that we described in the previous section, we define a self-testing protocol for coset states.
In a nutshell, the verifier in this protocol runs test rounds for BB84 states, until they are
convinced that the prover does not cheat. Once the verifier is convinced, they run one
test round for coset states. We prove in Appendix B.3.4 a soundness statement for this
protocol. That is a prover succeeding in the protocol with probability close to 1 (that
is, such that the verifier never aborts) must hold a state close to |As,s′⟩, up to a local
isometry, in their register at the beginning of the last test round. We describe formally
the behavior of honest verifier and prover below.

Protocol 4: Self-Testing of Coset States
This is an interactive protocol between a PPT verifier, and a QPT prover.
Parameters: A security parameter λ, integers n,M = poly(λ).
Inputs: The verifier is given as input an n-long coset state’s description (A, s, s′);
M2 pairs of one-time pad keys (si, s′i)i∈J1,M2K, where each si, s

′
i ∈ {0, 1}n; and an

integer j ∈ J1,M2K, corresponding to the position of the coset state in an honest
prover’s register. The prover initially holds a quantum state |ϕ⟩. For an honest prover,
|ϕ⟩ = ⊗M2+1

i=1 |ϕ⟩i = ⊗j−1
i=1 H |s′i⟩ ⊗ |As,s′⟩ ⊗⊗M2

i=j H |s′i⟩.

• The verifier samples B ←$ JM,M2 − 1K.

• The verifier and the prover perform B instances of protocol 2. For each instance,
the verifier samples an index i ∈ J1,M2 + 1K \ {j} that has not been used for a
previous instance, uses (si, s′i) as input, and tells the prover to use |ϕ⟩i as input.
The verifier aborts if any of these instances aborts. Otherwise, they continue.

• The verifier and the prover perform an instance of protocol 3. The verifier uses
(A, s, s′) as input, and tells the prover to use |ϕ⟩j as input. The prover aborts if
this execution aborts.

The reason why the verifier instructs the prover which part of their state they must
use as input is that in the final protocol, the prover blindly prepares quantum states |ϕ⟩
of the form described above: they know that each of these states consists of M2 |± · · · ±⟩
states, and one coset state |As,s′⟩, but do not know the position of the coset state.

On the soundness of the self-testing. Remark that the self-testing protocol described
above only has inverse-polynomial soundness. This is because a malicious prover can
always make a random guess on which of their registers will be used for the preparation
protocol, and not prepare this register’s state honestly. As there are a polynomial number
of registers, this behavior is unnoticed with inverse-polynomial probability. Remark that
the same argument also applies to the self-testing protocols of Gheorghiu and Vidick

142 Chapter 6. Semi-Quantum Unclonable Cryptography

(2019) and Gheorghiu, Metger, and Poremba (2022), which therefore also only satisfy
inverse-polynomial soundness. In our case, our ultimate goal is to construct a remote
coset state preparation protocol preserving direct product hardness and monogamy-of-
entanglement properties. We show in the following sections that a self-testing protocol
with inverse-polynomial security is enough.

6.5 Remote Coset State Preparation
We show in this section how to use Shmueli’s idea of “unsecure” remote coset state
preparation (protocol 1) to make the prover prepare |± · · · ±⟩ states and coset states
without knowing which state they are preparing. We can then plug this preparation to
protocol 4 to ensure that the prover does not know whether they are performing test
rounds for BB84 states, or for coset states.

6.5.1 Hiding a Coset State Round Among BB84 Rounds
Consider the following quantum circuit C, defined as follows. On input any non-zero
matrix A, describing a subspace A, C(A) returns the subspace state |A⟩. On input a
matrix filled with zeros (denoted simply as 0 in the following), C(0) returns n qubits |+⟩.
As already mentioned, running C on an encryption of A with quantum fully homomorphic
encryption yields a coset state |As,s′⟩, together with encryptions of s and s′. Running this
program on an encryption of 0 yields (up to a global phase) H |s′⟩ = ⊗n

i=1 H |s′i⟩: n qubits
in either |+⟩ or |−⟩ state, which we write |± · · · ±⟩ in the following.

Following this observation, and the fact that the correctness and soundness of the
self-testing protocol of Gheorghiu, Metger, and Poremba (2022) are preserved if the prover
uses |± · · · ±⟩ instead of |+ · · ·+⟩ as bit registers, our idea is to instruct the prover to
construct their own input for the test rounds. Concretely, to run a test round in the
BB84 version, the verifier first samples a pair of secret and public keys of a quantum
fully homomorphic encryption scheme, then sends the public key, along with the one-time
padded encryption of 0 to the prover. The honest prover then homomorphically evaluates
C on this encryption, and uses the outcome state as input in protocol 2. To run a test
round in the coset states version, the verifier does the same, except that they send an
encryption of a random subspace A, of dimension n/2, instead of an encryption of 0. It is
important to notice that, when doing the tests this way, a malicious prover cannot tell
whether they are performing a BB84 version, or a coset state version. This is implied by
the semantic security of the quantum fully homomorphic encryption scheme, and allows
us to carry the security of the self-testing protocol of Gheorghiu, Metger, and Poremba
(2022) to our settings.

6.5.2 Remote Coset States Preparation for Coset States
We present below our final remote coset state preparation protocol. In this protocol, the
verifier makes the prover prepare κM2 states of the form |± · · · ±⟩, and 2κ coset states. The
verifier and the prover then execute κ instances of protocol 4 with for each instance, M2

|± · · · ±⟩ states, and one coset state, picked at random by the verifier. Once all tests pass
and these input states are consumed, the verifier tells the prover to output the remaining
κ coset states, and outputs their descriptions. This κ among 2κ cut-and-choose protocol

6.5. Remote Coset State Preparation 143

allows us to leverage the quantum sample-and-estimate formalism of Bouman and Fehr
(2010) to prove that a malicious prover passing all tests must have prepared at least one
coset state. This result however, only holds with probability inverse polynomially close to 1,
and not probability negligibly close to 1 as we would like. The reason is that the underlying
self-testing protocol (protocol 4) only has inverse polynomial soundness. We prove that this
does not prevent our remote coset state preparation protocol to preserve the direct product
hardness and monogamy-of-entanglement properties. Intuitively, this protocol allows a
malicious prover to cheat without being caught (up to inverse polynomial probability) and
prepare a state that differs from a coset state, but this cheating strategy does not provide
them useful information for the direct product hardness, and monogamy-of-entanglement
games.

Protocol 5: Remote Coset State Preparation
Let λ be a security parameter, κ = λ, and n,M = poly(λ). Let ⟨KeyGen,Enc,Dec,Eval⟩
be a quantum fully homomorphic encryption protocol. This is an interactive protocol
between a PPT verifier, and a QPT prover.

Setup:

(BB84 instances)

− The verifier samples κM2 pairs of keys (skij, pkij) ← KeyGen(1λ) for
every i ∈ J1, κK, j ∈ J1,M2K.

− The verifier samples κM2 pairs of one-time pad keys (xij, zij), where
xij, z

i
j ∈ {0, 1}n

2/2, for i ∈ J1, κK, and j ∈ J1,M2K.

− The verifier computes ctxi
j
← Enc(pki, xij) and ctzi

j
← Enc(pki, zij) for

every i ∈ J1, κK, j ∈ J1,M2K.

− The verifier computes 0i,(x
i
j ,z

i
j)

j : the one-time pad encryption of the 0
matrix in Fn2 with keys xij and zij for every i ∈ J1, κK, j ∈ J1,M2K.

(Coset instances)

− The verifier samples 2κ pairs of keys (ski, pki)← KeyGen(1λ).

− The verifier samples 2κ subspaces Ai of dimension n/2, and 2κ pairs of
one-time pad keys (xi, zi).

− The verifier computes ctxi ← Enc(pki, xi) and ctzi ← Enc(pki, zi) for
every i ∈ J1, 2κK.

− The verifier computes Ai,(xi,zi): the one-time pad encryption of Ai with
keys xi and zi, for every i ∈ J1, 2κK.

State preparation:

− The verifier shuffles all the tuples{(
pki, Ai,(xi,zi), ctxi , ctzi

)}
i∈J1,2κK

∪
{(

pkij, 0
i,(xi

j ,z
i
j)

j , ctxi
j
, ct′zi

j

)}
i∈J1,κK,j∈JM2K

and sends them to the prover.

144 Chapter 6. Semi-Quantum Unclonable Cryptography

− Let C the quantum circuit defined as C(0) = |+ · · ·+⟩ and C(A) = |A⟩
for A ̸= 0.

− The prover computes(
|Ai,si,s′

i
⟩ , ctsi , cts′i

)
← Eval(pki, Ai,(xi,zi), ctxi , ctzi ,C)

(
H |s′ij ⟩ , ctsi

j
, cts′i

j

)
← Eval(pkij, 0

i,(xi
j ,z

i
j)

j , ctxi
j
, ct′zi

j
,C)

for all i ∈ J1, 2κK, j ∈ J1,M2K.5

− The prover sends all the (ctsi , cts′i) and all the (ctsi
j
, cts′i

j
) to the verifier.

− The verifier computes

si ← Dec(ski, ctsi),

s′i ← Dec(ski, cts′i),
sij ← Dec(skij, ctsi

j
),

s′ij ← Dec(skij, cts′i
j
)

for every i ∈ J1, κK, j ∈ J1,M2K.

Self-testing:

− For i ∈ JκK : The verifier and the prover run protocol 4 with (Ai, si, s′i)
and {(sij, s′ij)}j∈J1,M2K as verifier’s input, and |ϕ⟩ = |Ai,si,s′

i
⟩⊗⊗M2

j=1 H |s′ij ⟩
(not necessarily in this order) as prover’s input.6 If any instance aborts,
the verifier aborts.

Output:

− For i ∈ Jκ+ 1, 2κK : The verifier prepares the obfuscated membership
programs P̂Ai+si , P̂A(i)⊥+s′i , then send them to the prover.

− The verifier outputs {(Ai, si, s′i)}i∈Jκ+1,2κK.

− The prover outputs {|Ai,si,s′
i
⟩}i∈Jκ+1,2κK.

− Both also output {P̂Ai+si , P̂A(i)⊥+s′i}i∈Jκ+1,2κK.

Note that, because of the shuffling, the prover does not know which instances are BB84 ones, and
which are coset states ones.

We prove in Appendix B.3.5 that the initial state of any prover succeeding in the
protocol with probability close to 1 must be inverse-polynomially close to |As,s′⟩. While
this inverse-polynomially closeness is not usually considered secure enough, we show that
this is does not prevent our protocol to preserve the monogamy-of-entanglement and direct
product hardness properties of coset states.

Theorem 24 (Informal). Assume the existence of post-quantum indistinguishability
obfuscation, one-way functions, and quantum hardness of the LWE problem. Then

6.6. Semi-Quantum Copy-Protection 145

protocol 5 has correctness, and it preserves direct product hardness and monogamy-of-
entanglement properties.

We present below the proof idea for the monogamy-of-entanglement. The same proof
structure can be applied for direct product hardness. The first argument is that the κ
among 2κ sample-and-estimate allows us to say that, with inverse polynomial probability,
at least one of the registers of a prover passing all tests really contains a coset state |As,s′⟩.
Then, consider the following hybrid, in which the verifier is now quantum. The verifier
asks the prover, at the end of the remote coset state preparation, to send them one of them
register (the index is sampled at random by the verifier). The verifier then checks that
the state sent by the prover is the expected coset state (they can do it efficiently with the
description of the coset state), and returns it if it is. If not, they abort the protocol. The
rest of the game consists in playing the monogamy-of-entanglement game with this single
state (the κ− 1 others are ignored). As mentioned above, one of the state of the prover
is |As,s′⟩ with inverse polynomial probability q. As this state is chosen by the verifier
in the hybrid game with probability 1/κ, a triple of adversaries winning the game with
non-negligible probability p also wins this hybrid with probability at least pq

κ
, which is

also non-negligible.
It remains to show that this hybrid cannot be won with non-negligible probability. This

is done by first removing the secret key of the quantum fully homomorphic encryption,
using both subspace obfuscation techniques of Coladangelo, Liu, Liu, and Zhandry (2021),
and complexity leveraging of Shmueli (2022a). Then, we construct a last hybrid, in which
the verifier, instead of sending back the coset state to the prover, samples another coset
state at random and sends it. The monogamy-of-entanglement game is then played with
this new coset state, and we leverage the monogamy-of-entanglement property to state
that no adversaries can win this game with non-negligible probability, concluding the
proof.

We refer the interested reader to Appendix B.4 for a complete proof.

6.6 Semi-Quantum Copy-Protection

Recall that our goal is to construct semi-quantum constructions of unclonable primitives.
We show in this section how to use our remote coset state preparation protocol in a
plug-and-play manner to construct a semi-quantum version of an unclonable primitive
given a regular construction of this primitive. As an example, we show how to construct
a semi-quantum copy-protection scheme from construction 14, using construction 17 as
backbone underlying copy-protection of pseudorandom functions. We only consider the
non-colliding challenge distribution for the sake of simplicity, but note that the definitions,
construction, and proofs below can easily be adapted to other distributions. The difference
between a regular, and a semi-quantum copy-protection scheme, is that in the latter
version, the vendor is classical, and instructs the client on how to construct their protected
quantum program. The anti-piracy of regular copy-protection must be preserved, in the
sense that we define a semi-quantum version of the regular anti-piracy game, and no
malicious client should have any advantage in this semi-quantum version, compared to the
regular one.

146 Chapter 6. Semi-Quantum Unclonable Cryptography

6.6.1 Semi-Quantum Copy-Protection of Point Functions
We formally define in this section semi-quantum copy-protection scheme for point functions.

Definition 39 (Semi-Quantum Copy-Protection of Point Functions). A semi-quantum
copy-protection scheme of a point functions family F = {PFy}y∈{0,1}n is composed of an
interactive protocol Protect and an algorithm Eval defined in the following way:

• | ⟩ ← Protect⟨V(1λ, y),P(1λ)⟩. The protection interactive protocol is between a
PPT vendor V and a QPT client P . The vendor takes as input a security parameter,
and a point y ∈ {0, 1}n. The client takes as input a security parameter, and outputs
a quantum encoding | ⟩ of PFy.

• z ← Eval(| ⟩ , x). The evaluation algorithm takes as input a quantum encoding | ⟩,
and an input x in {0, 1}n, and outputs a bit z.

In addition, a semi-quantum copy-protection scheme of point functions must satisfy
the following properties.

Correctness. The correctness of a semi-quantum copy-protection scheme of point
functions is adapted from the correctness definition of a regular scheme. That is, for all
y, x ∈ {0, 1}n, and for all honest PPT vendor V and QPT client P :

Pr
[
Eval(| ⟩ , x) =

{
1 if x = y
0 otherwise : | ⟩ ← Protect⟨V(1λ, y),P(1λ)⟩

]
≥ 1− negl(λ)

Anti-piracy security with respect to non-colliding distribution. This definition is
defined through a game, parametrized by a security parameter λ, and between a challenger
and a triple of QPT algorithms (A,B, C). During the game, B and C are not allowed to
communicate.

• Setup phase:

− The challenger samples a point y ←$ {0, 1}n.

− The challenger and the client run the protection protocol: | ⟩ ← Protect⟨
V(1λ, y),A(1λ)⟩.

• Splitting phase:

− A prepares a bipartite state | ∗⟩12.

− A sends | ∗⟩1 to B, and | ∗⟩2 to C.

• Challenge phase:

− The challenger samples (x1, x2) ← Dncy . That is, the challenger samples two
independent random bitstrings x′, x′′ ←$ {0, 1}n; then sets (x1, x2) = (y, x′), or
(x1, x2) = (x′, y), or (x1, x2) = (x′, x′′), with probability 1/3 for each case.

− The challenger sends x1 to B, and x2 to C.

6.6. Semi-Quantum Copy-Protection 147

Challenger
y ←$ {0, 1}n

(x1, x2)←$ Dnc
y

AProtect

B
|ψ∗⟩1

x1

z∗1

C|ψ∗⟩2

x2

z∗2

Winning Condition:
z∗

1 = PFy(x1)
∧

z∗
2 = PFy(x2)

Figure 6.2: Anti-piracy security of a semi-quantum copy-protection scheme of point functions,
with respect to the non-colliding distribution. This property states that no triple of efficient
adversaries must win this game with probability significantly greater than 2/3.

Let z∗1 denotes the output of B, and z∗2 denotes the output of C. B makes a correct guess
if z∗1 = PFy(x1), that is if x1 = y and z∗1 = 1 or if x1 ̸= y and z∗1 = 0. Similarly, C makes a
correct guess if z∗2 = PFy(x2), that is if x2 = y and z∗2 = 1 or if x2 ̸= y and z∗2 = 0. A, B,
and C win the game if both B and C make a correct guess. We say that a copy-protection
scheme of point functions has anti-piracy security with respect to the product distribution
if no triple of QPT adversaries wins this game with probability significantly greater than
2/3.

In other words, if for all triple of QPT adversaries (A,B, C):

Pr


z∗1 = PFy(x1)

∧
z∗2 = PFy(x2)

:

z∗1 ← B(| ∗⟩1 , x1); z∗2 ← C(|
∗⟩2 , x2)

(x1, x2)←$ Dncy
| ∗⟩12 ← A(| ⟩)
| ⟩ ← Protect⟨V(1λ, y),A(1λ)⟩
y ←$ {0, 1}n

 ≤
2
3 + negl(λ)

We provide an illustration of this game in Figure 6.2.

6.6.2 Construction
We present below a construction of semi-quantum copy-protection scheme of point functions.
This construction is based on our black-box construction 14, where we use construction 17
as the underlying copy-protection of pseudorandom functions. The protection algorithm is
replaced by an interactive protocol, in which we use our remote coset state preparation to
make the scheme semi-quantum.

Construction 19: Semi-Quantum Copy-Protection of Point Functions
Let λ a security parameter, and n = poly(λ). Let RCP be the remote coset state
preparation of protocol 5. Let DHiddenTrigger be a family of Test and Extract procedures
as defined in Section 5.5. Let {PRFk}k∈K a family of puncturable and extracting
pseudorandom functions, with input space {0, 1}nX , and output space {0, 1}nZ , where

148 Chapter 6. Semi-Quantum Unclonable Cryptography

nX , nZ = poly(λ), and nZ is smaller enough than nX . Let κ = poly(λ), κ < nX . Recall
that for any program P, we use the notation P̂ = iO(P).

Protect⟨V(1λ, y),P(1λ)⟩ :

− V and P run
(
(Ai, si, s′i)i∈J1,κK, |ψ⟩

)
← RCP⟨V(1λ),P(1λ)⟩ to prepare

κ n-long coset states.

− V samples k←$ K.

− V samples (Test,Extract)←$ DHiddenTrigger.

− V generates the program Rk, defined in program 2, parametrized by the
procedures Test and Extract, and the obfuscated membership programs
{P̂Ai+si

, P̂A⊥
i +s′

i
}i∈J1,κK.

− V sends R̂k = iO(Rk), and z = PRFk(y) to P .((⊗κ
i=1 |Ai,si,s′

i
⟩ , R̂k, z

)
, x
)

:

− For i ∈ J1, κK:
∗ if xi = 1: apply a Hadamard gate Hn on |Ai,si,s′

i
⟩;

∗ otherwise leave the state unchanged;
∗ in any case, denote the resulting state | ′

i⟩.

− Run the program R̂k coherently on (x, | ′

1⟩ , . . . , |
′

κ⟩). Let z′ denotes
the outcome.

− Uncompute the Hadamard gates above.

− Return 1 if z′ = z, and 0 otherwise.

Correctness and anti-piracy security. The correctness of this construction follows
directly from the correctness of the original construction, and the one of the remote coset
state preparation protocol (protocol 5).

Theorem 25 (Correctness of Construction 19). Assume the existence of post-quantum
indistinguishability obfuscation, one-way functions, compute-and-compare obfuscation for
the class of unpredictable distributions. Then the semi-quantum copy-protection scheme
defined in construction 19 has correctness.

The anti-piracy security follows from the fact that the remote coset state preparation
protocol preserves the monogamy-of-entanglement property. The proof follows the one
of the original construction: the hybrids are defined similarly (preparing and sending
coset states in the original hybrids are replaced by the remote coset state preparation),
and the final reduction is made with the semi-quantum version (using protocol 5) of the
monogamy-of-entanglement game, instead of the original one.

The proof follows the same structure as the one for the original construction’s (con-
struction 14) security. The same arguments allow us to reduce the anti-piracy security
of this game to the real-or-random anti-piracy security with respect to the non-colliding

6.6. Semi-Quantum Copy-Protection 149

distribution of the semi-quantum equivalent of the single-decryptor construction of con-
struction 16. We formally describe this semi-quantum version below. Remark that in this
semi-quantum single-decryptor, the original key generation and quantum key generation
procedures are replaced by a single interactive protocol QKeyGen between the classical
vendor V and the quantum client P .

Construction 20: Semi-Quantum Single-Decryptor Scheme
Let n, κ = poly(λ).

• QKeyGen⟨V(1λ),P(1λ)⟩ :

− V and P run
(
(Ai, si, s′i)i∈J1,κK, |ψ⟩

)
← RCP⟨V(1λ),P(1λ)⟩ to prepare κ n-long

coset states.

− V generates the obfuscated membership programs {P̂Ai+si
, P̂A⊥

i +s′
i
}i∈J1,κK, and

send them to P .

− Set sk =
(
(Ai, si, s′i)i∈J1,κK

)
, pk = {P̂Ai+si

, P̂A⊥
i +s′

i
}i∈J1,κK, and | ⟩ = |ψ⟩.

• Enc({P̂Ai+si
, P̂A⊥

i +s′i}i∈J1,κK,m) :

− Sample r ←$ {0, 1}R.

− Generate an iO-obfuscated program Q̂m,r of program Qm,r described in pro-
gram 1.

− Return
(
r, Q̂m,r

)
.

• Dec
(
| ⟩ ,

(
r, Q̂m,r

))
:

− For all i ∈ J1, κK : if ri = 1, apply H⊗n to the i-th register of | ⟩.

− Let | ′⟩ be the resulting state, run Q̂m,r coherently on | ′⟩. Let m denotes the
outcome.

− Uncompute the Hadamard gates above.

− Return m.

Recall that in Section 5.4.5, the main argument regarding the security of the single-
decryptor is that, in the real-or-random anti-piracy security game, we can replace the
compute-and-compare programs in the encryption challenges by simulated programs
without any information on the message, making sure that Bob and Charlie cannot both
guess which message has been encrypted. Observe that we can actually use the same
replacement in this semi-quantum version: assume there exists a triple of adversaries
Alice, Bob, and Charlie, such that Bob and Charlie both distinguish compute-and-compare
programs from simulated ones. Then, we construct another triple of adversaries, Alex,
Billy, and Clover, that win the semi-quantum monogamy-of-entanglement game of coset
states with non-negligible probability, leading to a contradiction. Billy and Clover use Bob
and Charlie to extract the lock-value of their respective compute-and-compare program (we
know they can do this, as Bob and Charlie can both distinguish between their respective
compute-and-compare program, and the simulated one). Because we are considering the

150 Chapter 6. Semi-Quantum Unclonable Cryptography

non-colliding distribution, the random coins r1 and r2 used for Bob and Charlie’s challenges
respectively will be such that r1,i = 0 and r2,i = 1 for some index i with overwhelming
probability. The corresponding lock-values are then vectors in A+ s× A⊥ + s′. Billy and
Clover simply have to output these lock-values to win the game. This contradicts the
semi-quantum monogamy-of-entanglement property of coset states, therefore proving the
security of our construction.

Theorem 26 (Anti-Piracy Security of Construction 19). Assume the existence of post-
quantum indistinguishability obfuscation, one-way functions, compute-and-compare obfus-
cation for the class of unpredictable distributions. Then the copy-protection scheme defined
in construction 19 has anti-piracy security, with respect to the non-colliding distribution.

We stress that semi-quantum versions of constructions whose security is based on the
direct-product hardness or monogamy-of-entanglement of coset states can be achieved
in the same way, by simply replacing the preparation and sending of coset states by our
remote coset state preparation protocol.

Bibliography

Aaronson, Scott (July 2009). “Quantum Copy-Protection and Quantum Money”. In: 2009
24th Annual IEEE Conference on Computational Complexity. doi: 10.1109/ccc.2009.
42. url: http://dx.doi.org/10.1109/CCC.2009.42.

Aaronson, Scott and Paul Christiano (2012). “Quantum money from hidden subspaces”.
In: Proceedings of the forty-fourth annual ACM symposium on Theory of computing,
pp. 41–60.

Aaronson, Scott, Jiahui Liu, Qipeng Liu, Mark Zhandry, and Ruizhe Zhang (2021). “New
approaches for quantum copy-protection”. In: Advances in Cryptology–CRYPTO 2021:
41st Annual International Cryptology Conference, CRYPTO 2021, Virtual Event,
August 16–20, 2021, Proceedings, Part I 41. Springer, pp. 526–555.

Ananth, Prabhanjan and Amit Behera (2024). “A modular approach to unclonable cryp-
tography”. In: Annual International Cryptology Conference. Springer, pp. 3–37.

Ananth, Prabhanjan and Fatih Kaleoglu (2021). “Unclonable encryption, revisited”. In:
Theory of Cryptography Conference. Springer, pp. 299–329.

Ananth, Prabhanjan, Fatih Kaleoglu, Xingjian Li, Qipeng Liu, and Mark Zhandry (2022).
“On the feasibility of unclonable encryption, and more”. In: Annual International
Cryptology Conference. Springer, pp. 212–241.

Ananth, Prabhanjan, Fatih Kaleoglu, and Qipeng Liu (Aug. 2023). “Cloning Games: A
General Framework for Unclonable Primitives”. In: CRYPTO 2023, Part V. Ed. by
Helena Handschuh and Anna Lysyanskaya. Vol. 14085. LNCS. Springer, Heidelberg,
pp. 66–98. doi: 10.1007/978-3-031-38554-4_3.

Ananth, Prabhanjan and Rolando L. La Placa (Oct. 2021). “Secure Software Leasing”. In:
EUROCRYPT 2021, Part II. Ed. by Anne Canteaut and François-Xavier Standaert.
Vol. 12697. LNCS. Springer, Heidelberg, pp. 501–530. doi: 10.1007/978-3-030-
77886-6_17.

Ananth, Prabhanjan, Alexander Poremba, and Vinod Vaikuntanathan (2023). “Revocable
cryptography from learning with errors”. In: Theory of Cryptography Conference.
Springer, pp. 93–122.

Barak, Boaz, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang (Aug. 2001). “On the (Im)possibility of Obfuscating Programs”.
In: CRYPTO 2001. Ed. by Joe Kilian. Vol. 2139. LNCS. Springer, Heidelberg, pp. 1–18.
doi: 10.1007/3-540-44647-8_1.

Bartusek, James, Sanjam Garg, Vipul Goyal, Dakshita Khurana, Giulio Malavolta, Justin
Raizes, and Bhaskar Roberts (2023). “Obfuscation and outsourced computation with
certified deletion”. In: Cryptology ePrint Archive.

Bartusek, James and Dakshita Khurana (Aug. 2023). “Cryptography with Certified
Deletion”. In: CRYPTO 2023, Part V. Ed. by Helena Handschuh and Anna Lysyanskaya.

https://doi.org/10.1109/ccc.2009.42
https://doi.org/10.1109/ccc.2009.42
http://dx.doi.org/10.1109/CCC.2009.42
https://doi.org/10.1007/978-3-031-38554-4_3
https://doi.org/10.1007/978-3-030-77886-6_17
https://doi.org/10.1007/978-3-030-77886-6_17
https://doi.org/10.1007/3-540-44647-8_1

152 Bibliography

Vol. 14085. LNCS. Springer, Heidelberg, pp. 192–223. doi: 10.1007/978-3-031-38554-
4_7.

Bartusek, James, Dakshita Khurana, Giulio Malavolta, Alexander Poremba, and Michael
Walter (2023). “Weakening assumptions for publicly-verifiable deletion”. In: Theory of
Cryptography Conference. Springer, pp. 183–197.

Bartusek, James, Dakshita Khurana, and Alexander Poremba (2023). “Publicly-verifiable
deletion via target-collapsing functions”. In: Annual International Cryptology Confer-
ence. Springer, pp. 99–128.

Behera, Amit, Or Sattath, and Uriel Shinar (2021). “Noise-tolerant quantum tokens for
mac”. In: arXiv preprint arXiv:2105.05016.

Ben-David, Shalev and Or Sattath (2023). “Quantum tokens for digital signatures”. In:
Quantum 7, p. 901.

Bennett, Charles and Gilles Brassard (Jan. 1984). “Quantum cryptography: Public key
distribution and coin tossing”. In: vol. 560, pp. 175–179. doi: 10.1016/j.tcs.2011.
08.039.

Bennett, Charles H., Gilles Brassard, Seth Breidbard, and Stephen Wiesner (1982). “Quan-
tum Cryptography, or Unforgeable Subway Tokens”. In: Advances in Cryptology:
Proceedings of CRYPTO ’82. Plenum, pp. 267–275.

Boneh, Dan and Brent Waters (Dec. 2013). “Constrained Pseudorandom Functions and
Their Applications”. In: ASIACRYPT 2013, Part II. Ed. by Kazue Sako and Palash
Sarkar. Vol. 8270. LNCS. Springer, Heidelberg, pp. 280–300. doi: 10.1007/978-3-
642-42045-0_15.

Bouman, Niek J and Serge Fehr (2010). “Sampling in a quantum population, and applica-
tions”. In: Annual Cryptology Conference. Springer, pp. 724–741.

Boyle, Elette, Shafi Goldwasser, and Ioana Ivan (Mar. 2014). “Functional Signatures and
Pseudorandom Functions”. In: PKC 2014. Ed. by Hugo Krawczyk. Vol. 8383. LNCS.
Springer, Heidelberg, pp. 501–519. doi: 10.1007/978-3-642-54631-0_29.

Brakerski, Zvika, Paul Christiano, Urmila Mahadev, Umesh V. Vazirani, and Thomas
Vidick (Oct. 2018). “A Cryptographic Test of Quantumness and Certifiable Randomness
from a Single Quantum Device”. In: 59th FOCS. Ed. by Mikkel Thorup. IEEE Computer
Society Press, pp. 320–331. doi: 10.1109/FOCS.2018.00038.

Broadbent, Anne and Eric Culf (2023). “Uncloneable Cryptographic Primitives with
Interaction”. In: arXiv preprint arXiv:2303.00048.

Broadbent, Anne and Rabib Islam (Nov. 2020). “Quantum Encryption with Certified Dele-
tion”. In: TCC 2020, Part III. Ed. by Rafael Pass and Krzysztof Pietrzak. Vol. 12552.
LNCS. Springer, Heidelberg, pp. 92–122. doi: 10.1007/978-3-030-64381-2_4.

Broadbent, Anne, Stacey Jeffery, Sébastien Lord, Supartha Podder, and Aarthi Sundaram
(2021). “Secure software leasing without assumptions”. In: Theory of Cryptography
Conference. Springer, pp. 90–120.

Broadbent, Anne and Sébastien Lord (2020). “Uncloneable Quantum Encryption via
Oracles”. In: Leibniz International Proceedings in Informatics (LIPIcs) 158. Ed. by
Steven T. Flammia, 4:1–4:22. issn: 1868-8969.

Brodutch, Aharon, Daniel Nagaj, Or Sattath, and Dominique Unruh (2014). “An adaptive
attack on Wiesner’s quantum money”. In: arXiv preprint arXiv:1404.1507.

Cakan, Alper, Vipul Goyal, Chen-Da Liu-Zhang, and João Ribeiro (2024). “Unbounded
leakage-resilience and intrusion-detection in a quantum world”. In: Theory of Cryptog-
raphy Conference. Springer, pp. 159–191.

https://doi.org/10.1007/978-3-031-38554-4_7
https://doi.org/10.1007/978-3-031-38554-4_7
https://doi.org/10.1016/j.tcs.2011.08.039
https://doi.org/10.1016/j.tcs.2011.08.039
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1109/FOCS.2018.00038
https://doi.org/10.1007/978-3-030-64381-2_4

Bibliography 153

Chevalier, Céline, Paul Hermouet, and Quoc-Huy Vu (2023). “Semi-quantum copy-
protection and more”. In: Theory of Cryptography Conference. Springer, pp. 155–
182.

— (2024a). “Security Models and Cryptographic Protocols in a Quantum World”. In:
Foundations and Trends in Theoretical Computer Science. To appear.

— (2024b). “Towards Unclonable Cryptography in the Plain Model”. In: https://eprint.
iacr.org/2023/1825. url: https://eprint.iacr.org/2023/1825.

Cohen, Aloni, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and Daniel Wichs
(2016). “Watermarking cryptographic capabilities”. In: Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing, pp. 1115–1127.

Coladangelo, Andrea, Jiahui Liu, Qipeng Liu, and Mark Zhandry (Aug. 2021). “Hidden
Cosets and Applications to Unclonable Cryptography”. In: CRYPTO 2021, Part I.
Ed. by Tal Malkin and Chris Peikert. Vol. 12825. LNCS. Virtual Event: Springer,
Heidelberg, pp. 556–584. doi: 10.1007/978-3-030-84242-0_20.

Coladangelo, Andrea, Christian Majenz, and Alexander Poremba (2024). “Quantum copy-
protection of compute-and-compare programs in the quantum random oracle model”.
In: Quantum 8, p. 1330.

Coladangelo, Andrea and Or Sattath (July 2020). “A Quantum Money Solution to
the Blockchain Scalability Problem”. In: Quantum 4, p. 297. issn: 2521-327X. doi:
10.22331/q-2020-07-16-297. url: http://dx.doi.org/10.22331/q-2020-07-16-
297.

Conde Pena, Marta, Raul Duran Diaz, Jean-Charles Faugere, Luis Hernandez Encinas, and
Ludovic Perret (2019). “Non-quantum cryptanalysis of the noisy version of Aaronson–
Christiano’s quantum money scheme”. In: IET Information Security 13.4, pp. 362–
366.

Culf, Eric and Thomas Vidick (2022). “A monogamy-of-entanglement game for subspace
coset states”. In: Quantum 6, p. 791.

Deutsch, David and Richard Jozsa (1992). “Rapid solution of problems by quantum
computation”. In: Proceedings of the Royal Society of London. Series A: Mathematical
and Physical Sciences 439.1907, pp. 553–558.

Diffie, Whitfield and Martin E Hellman (1976). “New directions in cryptography”. In:
IEEE transactions on Information Theory 22.6, pp. 644–654.

Farhi, Edward, David Gosset, Avinatan Hassidim, Andrew Lutomirski, and Peter Shor
(2012). “Quantum money from knots”. In: Proceedings of the 3rd Innovations in
Theoretical Computer Science Conference, pp. 276–289.

Feynman, Richard P (2018). “Simulating physics with computers”. In: Feynman and
computation. cRc Press, pp. 133–153.

Georgiou, Marios and Mark Zhandry (2020). Unclonable Decryption Keys. Cryptology
ePrint Archive, Report 2020/877. https://ia.cr/2020/877.

Gheorghiu, Alexandru, Tony Metger, and Alexander Poremba (2022). “Quantum cryptogra-
phy with classical communication: parallel remote state preparation for copy-protection,
verification, and more”. In: arXiv preprint arXiv:2201.13445.

Gheorghiu, Alexandru and Thomas Vidick (2019). “Computationally-secure and compos-
able remote state preparation”. In: 2019 IEEE 60th Annual Symposium on Foundations
of Computer Science (FOCS). IEEE, pp. 1024–1033.

Goldreich, Oded, Shafi Goldwasser, and Silvio Micali (Oct. 1984). “How to Construct
Random Functions (Extended Abstract)”. In: 25th FOCS. IEEE Computer Society
Press, pp. 464–479. doi: 10.1109/SFCS.1984.715949.

https://eprint.iacr.org/2023/1825
https://eprint.iacr.org/2023/1825
https://eprint.iacr.org/2023/1825
https://doi.org/10.1007/978-3-030-84242-0_20
https://doi.org/10.22331/q-2020-07-16-297
http://dx.doi.org/10.22331/q-2020-07-16-297
http://dx.doi.org/10.22331/q-2020-07-16-297
https://ia.cr/2020/877
https://doi.org/10.1109/SFCS.1984.715949

154 Bibliography

Gottesman, Daniel (2002). “Uncloneable encryption”. In: arXiv preprint quant-ph/0210062.
Håstad, Johan, Russell Impagliazzo, Leonid A. Levin, and Michael Luby (1999). “A Pseu-

dorandom Generator from any One-way Function”. In: SIAM Journal on Computing
28.4, pp. 1364–1396.

Hiroka, Taiga, Tomoyuki Morimae, Ryo Nishimaki, and Takashi Yamakawa (Dec. 2021).
“Quantum Encryption with Certified Deletion, Revisited: Public Key, Attribute-Based,
and Classical Communication”. In: ASIACRYPT 2021, Part I. Ed. by Mehdi Tibouchi
and Huaxiong Wang. Vol. 13090. LNCS. Springer, Heidelberg, pp. 606–636. doi:
10.1007/978-3-030-92062-3_21.

— (2022). Certified Everlasting Functional Encryption. Cryptology ePrint Archive, Report
2022/969. https://eprint.iacr.org/2022/969.

Johnston, Nathaniel, Rajat Mittal, Vincent Russo, and John Watrous (2016). “Extended
non-local games and monogamy-of-entanglement games”. In: Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences 472.2189.

Kane, Daniel M, Shahed Sharif, and Alice Silverberg (2022). “Quantum money from
quaternion algebras”. In: Mathematical Cryptology 2.1, pp. 60–83.

Kane, Daniel M. (2018). Quantum Money from Modular Forms. arXiv: 1809.05925
[quant-ph].

Kiayias, Aggelos, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias
(Nov. 2013). “Delegatable pseudorandom functions and applications”. In: ACM CCS
2013. Ed. by Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung. ACM Press,
pp. 669–684. doi: 10.1145/2508859.2516668.

Kitagawa, Fuyuki and Ryo Nishimaki (2023). “One-out-of-Many Unclonable Cryptography:
Definitions, Constructions, and More”. In: Theory of Cryptography Conference. Springer,
pp. 246–275.

Kitagawa, Fuyuki, Ryo Nishimaki, and Takashi Yamakawa (2021). “Secure software leasing
from standard assumptions”. In: Theory of Cryptography Conference. Springer, pp. 31–
61.

Kwiat, Paul, Harald Weinfurter, Thomas Herzog, Anton Zeilinger, and Mark A Kasevich
(1995). “Interaction-free measurement”. In: Physical Review Letters 74.24, p. 4763.

Liu, Jiahui, Hart Montgomery, and Mark Zhandry (Apr. 2023a). “Another Round of
Breaking and Making Quantum Money: How to Not Build It from Lattices, and More”.
In: EUROCRYPT 2023, Part I. Ed. by Carmit Hazay and Martijn Stam. Vol. 14004.
LNCS. Springer, Heidelberg, pp. 611–638. doi: 10.1007/978-3-031-30545-0_21.

— (2023b). Another round of breaking and making quantum money: How to not build it
from lattices, and more. Springer.

Lutomirski, Andrew (2010). “An online attack against Wiesner’s quantum money”. In:
arXiv preprint arXiv:1010.0256.

Lutomirski, Andrew, Scott Aaronson, Edward Farhi, David Gosset, Jonathan A. Kelner,
Avinatan Hassidim, and Peter W. Shor (Jan. 2010). “Breaking and Making Quantum
Money: Toward a New Quantum Cryptographic Protocol”. In: ICS 2010. Ed. by
Andrew Chi-Chih Yao. Tsinghua University Press, pp. 20–31.

Mahadev, Urmila (2018). “Classical verification of quantum computations”. In: 2018
IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS). IEEE,
pp. 259–267.

Manin, Yuri I. (1980). “Computable and uncomputable”. In: Uspekhi Matematicheskikh
Nauk 35.6, pp. 219–220.

https://doi.org/10.1007/978-3-030-92062-3_21
https://eprint.iacr.org/2022/969
https://arxiv.org/abs/1809.05925
https://arxiv.org/abs/1809.05925
https://doi.org/10.1145/2508859.2516668
https://doi.org/10.1007/978-3-031-30545-0_21

Bibliography 155

Merkle, Ralph C (1978). “Secure communications over insecure channels”. In: Communi-
cations of the ACM 21.4, pp. 294–299.

Metger, Tony and Thomas Vidick (Jan. 2021). “Self-Testing of a Single Quantum Device
Under Computational Assumptions”. In: ITCS 2021. Ed. by James R. Lee. Vol. 185.
LIPIcs, 19:1–19:12. doi: 10.4230/LIPIcs.ITCS.2021.19.

Nakamoto, Satoshi (2008). “Bitcoin”. In: A peer-to-peer electronic cash system 21260.
Pastawski, Fernando, Norman Y Yao, Liang Jiang, Mikhail D Lukin, and J Ignacio Cirac

(2012). “Unforgeable noise-tolerant quantum tokens”. In: Proceedings of the National
Academy of Sciences 109.40, pp. 16079–16082.

Radian, Roy and Or Sattath (2019). “Semi-quantum money”. In: Proceedings of the 1st
ACM Conference on Advances in Financial Technologies, pp. 132–146.

Regev, Oded (May 2005). “On lattices, learning with errors, random linear codes, and
cryptography”. In: 37th ACM STOC. Ed. by Harold N. Gabow and Ronald Fagin.
ACM Press, pp. 84–93. doi: 10.1145/1060590.1060603.

Roberts, Bhaskar (Oct. 2021). “Security Analysis of Quantum Lightning”. In: EURO-
CRYPT 2021, Part II. Ed. by Anne Canteaut and François-Xavier Standaert. Vol. 12697.
LNCS. Springer, Heidelberg, pp. 562–567. doi: 10.1007/978-3-030-77886-6_19.

Sahai, Amit and Brent Waters (2014). “How to use indistinguishability obfuscation: deniable
encryption, and more”. In: Proceedings of the forty-sixth annual ACM symposium on
Theory of computing, pp. 475–484.

Shmueli, Omri (2022a). “Public-key quantum money with a classical bank”. In: Proceedings
of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pp. 790–803.

— (2022b). “Semi-quantum tokenized signatures”. In: Annual International Cryptology
Conference. Springer, pp. 296–319.

Shor, Peter W (1994). “Algorithms for quantum computation: discrete logarithms and
factoring”. In: Proceedings 35th annual symposium on foundations of computer science.
Ieee, pp. 124–134.

— (1999). “Polynomial-time algorithms for prime factorization and discrete logarithms on
a quantum computer”. In: SIAM review 41.2, pp. 303–332.

Simon, D.R. (1994). “On the power of quantum computation”. In: pp. 116–123. doi:
10.1109/SFCS.1994.365701.

Tomamichel, Marco, Serge Fehr, Jedrzej Kaniewski, and Stephanie Wehner (Oct. 2013).
“A monogamy-of-entanglement game with applications to device-independent quantum
cryptography”. In: New Journal of Physics 15.10, p. 103002. doi: 10.1088/1367-2630/
15/10/103002. url: https://dx.doi.org/10.1088/1367-2630/15/10/103002.

Wiesner, Stephen (1983). “Conjugate coding”. In: ACM Sigact News 15.1, pp. 78–88.
Wilde, Mark M (2011). “From classical to quantum Shannon theory”. In: arXiv preprint

arXiv:1106.1445.
Zhandry, Mark (May 2019). “Quantum Lightning Never Strikes the Same State Twice”.

In: EUROCRYPT 2019, Part III. Ed. by Yuval Ishai and Vincent Rijmen. Vol. 11478.
LNCS. Springer, Heidelberg, pp. 408–438. doi: 10.1007/978-3-030-17659-4_14.

— (2020). “Schrödinger’s pirate: How to trace a quantum decoder”. In: Theory of Cryp-
tography: 18th International Conference, TCC 2020, Durham, NC, USA, November
16–19, 2020, Proceedings, Part III 18. Springer, pp. 61–91.

— (2021). “Quantum lightning never strikes the same state twice. or: quantum money
from cryptographic assumptions”. In: Journal of Cryptology 34, pp. 1–56.

https://doi.org/10.4230/LIPIcs.ITCS.2021.19
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1007/978-3-030-77886-6_19
https://doi.org/10.1109/SFCS.1994.365701
https://doi.org/10.1088/1367-2630/15/10/103002
https://doi.org/10.1088/1367-2630/15/10/103002
https://dx.doi.org/10.1088/1367-2630/15/10/103002
https://doi.org/10.1007/978-3-030-17659-4_14

156 Bibliography

Zhandry, Mark (2023). Quantum Money from Abelian Group Actions. Cryptology ePrint
Archive, Paper 2023/1097. https://eprint.iacr.org/2023/1097. url: https:
//eprint.iacr.org/2023/1097.

https://eprint.iacr.org/2023/1097
https://eprint.iacr.org/2023/1097
https://eprint.iacr.org/2023/1097

Appendix

A
Towards Unclonable
Cryptography in the Plain
Model - Supplementary
Materials

A.1 Copy-Protection of Pseudorandom Functions
We define in this section copy-protection of pseudorandom functions. We refer the reader
to Definition 8 for a definition of pseudorandom functions.

A.1.1 Definitions
Definition 40 (Copy-Protection of Point Functions). Consider a family of pseudorandom
functions F = {PRFk}k∈K with key space k. All PRFk have domain X and codomain Z.
For sake of simplicity, we denote k←$ K the key sampling procedure for this family. Note
that this sampling does not have to be uniform.

A copy-protection scheme of F is composed of two algorithms ⟨Protect,Eval⟩ defined
in the following way:

• | ⟩ ← Protect(1λ, k). The protection algorithm takes as input a security parameter,
and a key k ∈ K, and outputs a quantum encoding of PRFk: | ⟩.

• z ← Eval(| ⟩ , x). The evaluation algorithm takes as input a quantum encoding | ⟩,
and an input x in X , and outputs an image z in Z.

In addition, a copy-protection scheme of pseudorandom functions must satisfy the
following properties.

Correctness. The correctness of a copy-protection scheme of pseudorandom functions
is defined as follows. That is, for all k ∈ K, and x ∈ X ,

Pr
[
Eval(| ⟩ , x) = PRFk(x) : | ⟩ ← Protect(1λ, k)

]
≥ 1− negl(λ)

Reversed anti-piracy security. We define our new definition of reversed anti-piracy
security. This definition is defined through a game, parametrized by a security parameter λ,
and between a challenger and a triple of QPT adversaries (A,B, C). It is also parametrized
by a challenge distribution D = {Dx}x∈X , where each distribution Dx is over pairs of
inputs for the pseudorandom functions. During the game, B and C are not allowed to
communicate.

158 Appendix A. Towards Unclonable Cryptography in the Plain Model -
Supplementary Materials

• Setup phase:

− The challenger samples a key k←$ K, and an input x←$ X .

− The challenger computes | ⟩ ← Protect(1λ, k).

− The challenger computes z = PRFk(x).

− The challenger sends | ⟩ and z to A.

• Splitting phase:

− A prepares a bipartite state | ∗⟩12.

− A sends | ∗⟩1 to B, and | ∗⟩2 to C.

• Challenge phase:

− The challenger samples (x1, x2)← Dx.

− The challenger sends x1 to B, and x2 to C.

Let b∗1 denotes the output of B, and b∗2 denotes the output of C. B makes a correct
guess if b∗1 = 1 and x1 = x, or if b∗1 = 0 and x1 ≠ x. Similarly, C makes a correct guess if
b∗2 = 1 and x2 = x, or if b∗2 = 0 and x2 ̸= x. A, B, and C win the game if both B and C
make a correct guess. We say that a copy-protection scheme of pseudorandom functions
has reversed anti-piracy security with respect to the challenge distribution D if no triple
of QPT adversaries wins this game with probability significantly greater than the trivial
probability pD corresponding to D - typically, this trivial probability is 1/2 for the identical
and product challenge distributions, and 2/3 for the non-colliding distribution.

In other words, if for all triple of QPT adversaries (A,B, C):

Pr


(b∗

1 = 1 ∧ x1 = x) ∨ (b∗
1 = 0 ∧ x1 ̸= x)

∧
(b∗

2 = 1 ∧ x2 = x) ∨ (b∗
2 = 0 ∧ x2 ̸= x)

:

b∗
1 ← B(| ∗⟩1 , x1); b∗

2 ← C(|
∗⟩2 , x2)

(x1, x2)←$ Dx

| ∗⟩12 ← A(| ⟩ ,PRFk(x))
x←$ X
| ⟩ ← Protect(1λ, k)
k←$ K

 ≤ pD + negl(λ)

A.2 Real-Or-Random Anti-Piracy Security for Single-
Decryptors

In this section, we define our new real-or-random anti-piracy security for single-decryptors.
Let ⟨KeyGen,QKeyGen,Enc,Dec⟩ be a public-key single-decryptor with message space

M. Let R be the space of random coins used for the encryption. Define the following game,
parametrized by a security parameter λ, and between a challenger and a triple of adversaries
(A,B, C). It is also parametrized by a challenge distribution D = {D(m,r)}m∈M,r∈R, where
each distribution D(m,r) is over pairs of (message, random coins) pairs. During the game,
B and C are not allowed to communicate.

• Setup phase:

A.3. Proof of Theorem 19 159

− The challenger samples (sk, pk)← KeyGen(1λ).

− The challenger prepares | ⟩ ← QKeyGen(sk).

− The challenger sends | ⟩ and pk to A.

• Splitting phase:

− A prepares a bipartite state | ∗⟩12.

− A sends | ∗⟩1 to B, and | ∗⟩2 to C.

− A sends a message m to the challenger.

• Challenge phase:

− The challenger samples r ←$R, and ((m1, r1), (m2, r2))←$ D(m,r).

− The challenger computes c1 ← Enc(pk,m1; r1), and c2 ← Enc(pk,m2; r2). 1

− The challenger sends c1 to B and c2 to C.

Let b∗1 denotes the output of B, and b∗2 denotes the output of C. B makes a correct guess
if b∗1 = b and m1 = m or if b∗1 = 0 and m1 ̸= m. Similarly, C makes a correct guess if
b∗2 = b and m2 = m or if b∗2 = 0 and m2 ≠ m We say that a single-decryptor scheme
has real-or-random anti-piracy security with respect to the challenge distribution D if no
triple of QPT adversaries wins this game with probability significantly greater than the
trivial probability pD corresponding to D - typically, this trivial probability is 1/2 for the
identical and product challenge distributions, and 2/3 for the non-colliding distribution.

In other words, if for all triple of QPT adversaries (A,B, C):

Pr


(b∗

1 = 1 ∧m1 = m) ∨ (b∗
1 = 0 ∧m1 ̸= m)

∧
(b∗

2 = 1 ∧m2 = m) ∨ (b∗
2 = 0 ∧m2 ̸= m)

:

b∗
1 ← B(| ∗⟩1 ,Enc(pk,m1; r1))
b∗

2 ← C(|
∗⟩2 ,Enc(pk,m2; r2))

((m1, r1), (m2, r2))←$ D(m,r)
r ←$R
(| ∗⟩12 ,m)← A(| ⟩ , pk)
| ⟩ ← Protect(1λ, k)
(sk, pk)←$ KeyGen(1λ)


≤ pD + negl(λ)

A.3 Proof of Theorem 19
In this section, we formally prove Theorem 19. That is, that construction 17 has reversed
anti-piracy security with respect to a challenge distribution D if construction 16 has
real-or-random anti-piracy security with respect to D. This section is mostly an adaptation
of our paper: Chevalier, Hermouet, and Vu (2024b), and some parts are taken verbatim.

A.3.1 [CLLZ21] Construction
We start by presenting the complete construction of the copy-protection scheme of pseu-
dorandom functions of Coladangelo, Liu, Liu, and Zhandry (2021). In particular, we
explicitly give the Test and Extract procedures.

1Recall that Enc(pk,m1; r1) means that we use r1 as the random tape in the Enc algorithm.

160 Appendix A. Towards Unclonable Cryptography in the Plain Model -
Supplementary Materials

Let n be a polynomial in λ; we define nX ,0, nX ,1, nX ,2 such that nX = nX ,0 +nX ,1 +nX ,2
and nX ,2 − nX ,0 is large enough. For this construction, we need three pseudorandom
functions:

• A puncturable extracting pseudorandom function PRF1,k1 : {0, 1}nX → {0, 1}nZ with
error 2−λ−1 for min-entropy nX , where nZ is a polynomial in λ and nX ≥ nZ+2λ+4.

• A puncturable injective pseudorandom function PRF2,k2 : {0, 1}nX ,2 → {0, 1}nX ,1

with failure probability 2−λ, with nX ,1 ≥ 2nX ,2 + λ.

• A puncturable pseudorandom function PRF3,k3 : {0, 1}nX ,1 → {0, 1}nX ,2 .

Let K1,K2,K3 the key spaces for these three pseudorandom functions.

Construction 21: Pseudorandom Function Copy-Protection
Protect(1λ, k):

− Sample nX ,0 random coset states {|Ai,si,s′
i
⟩}i∈J1,nX ,0K, where each sub-

space Ai ⊆ Fn2 if of dimension n
2 .

− For each coset state |Ai,si,s′
i
⟩, prepare the obfuscated membership pro-

grams P̂0
i = iO(Ai + si) and P̂1

i = iO(A⊥i + s′i).

− Sample ki ←$ Ki for i ∈ {1, 2, 3}.

− Prepare the program R̂← iO(R), where R is described in Figure A.1.

− Return | k⟩ =
(
{|Ai,si,s′

i
⟩}i∈J1,nX ,0K, R̂

)
.

Eval(1λ, | k⟩ , x):

− Parse | k⟩ =
(
{|Ai,si,s′

i
⟩}i∈J1,nX ,0K, R̂

)
.

− Parse x as x(0)∥x(1)∥x(2), where each x(i) is of length nX ,i.

− For each i ∈ J1, nX ,0K, if x(0)
i = 1, apply H⊗n to |Ai,si,s′

i
⟩; if x(0)

i = 0,
leave the state unchanged.

− Let σ be the resulting state (which can be interpreted as a superposition
over tuples of nX ,0 vectors). Run R̂ coherently on input x and σ, and
measure the final output register to obtain z.

− Return z.

A.3.2 Proof of Reversed Anti-Piracy Security
We start by defining some notations.

Notations. In the proof, we sometimes parse x ∈ {0, 1}nX as (x(0), x(1), x(2)) such that
x = x(0)∥x(1)∥x(2) (where ·∥· is the concatenation operator) and the length of x(i) is nX ,i
for i ∈ {0, 1, 2}.

A.3. Proof of Theorem 19 161

Hardcoded: Keys (k1, k2, k3) ∈ K1 ×K2 ×K3, programs P0
i ,P1

i for all
i ∈ J1, nX ,0K.
On input x = x(0)∥x(1)∥x(2) and vectors v0, v1, · · · , vnX ,0 where each
vi ∈ Fn2 , do the following:

1. (Hidden Trigger Mode) If PRF3,k3(x(1)) ⊕ x(2) = x(0)∥Q′ and
x(1) = PRF2,k2(x(0)∥Q′): treat Q′ as a classical circuit and output
Q′(v1, · · · , vnX ,0).

2. (Normal Mode) If for all i ∈ J1, nX ,0K, Pxi
i (vi) = 1, then output

PRF1,k1(k1, x). Otherwise, output ⊥.

Figure A.1: Program R.

Given as input x(0) ∈ {0, 1}nX ,0 , z ∈ {0, 1}nZ , k2, k3 ∈ K2 × K3 and
cosets {Ai,si,s′

i
}i∈J1,nX ,0K:

1. Let Q be the program which, given v0, . . . , vnX ,0 , returns z if
R
x0,i

i (vi) = 1 for all i or ⊥ otherwise.

2. x′(1) ← PRF2,k2(x(0)∥Q);

3. x′(2) ← PRF3,k3(x′(1))⊕ (x(0)∥Q);

4. Return x(0)∥x′(1)∥x′(2).

Figure A.2: GenTrigger procedure.

We proceed with both proofs through a sequence of hybrids. For any pair of hybrids
(Gi, Gj), we say that Gi is negligibly close to Gj if for every triple of QPT adversaries
(A,B, C), the probability that (A,B, C) wins Gi is negligibly close to the probability that
they win Gj.

Procedure. We define the GenTrigger procedure (Figure A.2) which, given an input’s
prefix x(0) and a pseudorandom function image z returns a so-called trigger input x′ that:
passes the “Hidden Trigger” condition of the program R. Although this procedure also
takes as input pseudorandom function keys k2, k3 and coset states descriptions, we will
abuse notation and only write GenTrigger(x(0), y) when it is clear from the context. We
will also write GenTrigger(x(0); Q) - where Q is a program - to denote the same procedure
using Q instead of the program normally defined in step 1.

Trigger’s inputs lemma. The following lemma is taken from Coladangelo, Liu, Liu,
and Zhandry (2021, Lemma 7.17).

Lemma 2. Assuming post-quantum iO and one-way functions, any efficient QPT algorithm
A cannot win the following game with non-negligible advantage:

• A challenger samples ki ←$ Ki for i ∈ {1, 2, 3}, and prepares a quantum key
| k1
⟩ := ({|Ai,si,s′

i
⟩}i∈J1,nX ,0K, iO(R)) (recall that R has keys k1, k2, k3 hardcoded).

162 Appendix A. Towards Unclonable Cryptography in the Plain Model -
Supplementary Materials

• The challenger then samples a random input x1 ← {0, 1}nX ; let z1 ← PRF1,k1(x1)
and computes x′1 ← GenTrigger(x(0)

1 , z1).

• Similarly, the challenger samples a random input x2 ← {0, 1}nX ; let z2 ← PRF1,k1(x2)
and computes x′2 ← GenTrigger(x(0)

2 , z1).

• The challenger flips a coin b, and sends either
(
| k1
⟩ , x1, x2

)
or
(
| k1
⟩ , x′1, x′2

)
to A,

depending on the value of the coin.

A wins if it guesses b correctly.

Game G0: This is the reversed anti-piracy security game, with respect to the challenge
distribution D.

• Setup phase:

− The challenger samples nX ,0 random cosets {Ai, si, s′i}i∈J1,nX ,0K, and prepares
the associated coset states {|Ai,si,s′

i
⟩}i∈J1,nX ,0K and the obfuscated membership

programs {(P̂0
i , P̂1

i)}i∈J1,nX ,0K.
− The challenger samples ki ← Ki for i ∈ {1, 2, 3} and generates the obfuscated

program R̂← iO(R).
− The challenger samples x←$ {0, 1}nX and computes z := PRF1,k1(x).

− Finally, the challenger sends | k1
⟩ :=

(
{|Ai,si,s′

i
⟩}i∈J1,nX ,0K, R̂

)
and z to A.

• Splitting phase: A prepares a bipartite quantum state | ∗⟩12, then sends | ∗⟩1 to
B and | ∗⟩2 to C.

• Challenge phase:

− The challenger samples two inputs x1, x2 ←$ Dx.
− The challenger sends x1 to B, and x2 to C.

Let b∗1 denotes the output of B, and b∗2 denotes the output of C. B makes a correct
guess if b∗1 = 1 and x1 = x, or if b∗1 = 0 and x1 ≠ x. Similarly, C makes a correct
guess if b∗2 = 1 and x2 = x, or if b∗2 = 0 and x2 ̸= x. A, B, and C win the game if
both B and C make a correct guess.

Game G1: In this game, we replace the challenges x1 and x2 by their trigger inputs for
both B and C. More precisely, the challenge phases become the following.

• Challenge phase:

− The challenger samples two inputs x1, x2 ←$ Dx.
− The challenger computes z1 = PRF1,k1(x1) and z2 = PRF2,k2(x2).

− The challenger sends GenTrigger(x(0)
1 , z1) to B, and GenTrigger(x(0)

2 , z2) to C.

The trigger’s inputs lemma (Lemma 2) implies that G1 is negligibly close to G0.

A.3. Proof of Theorem 19 163

Game G2: In this game, we replace z (in the setup phase) and z1, z2 (in the challenge
phases) by uniformly random strings. Since all the inputs have enough min-entropy
nX ,1 + nX ,2 ≥ m + 2λ + 4 and PRF1 is extracting, the images are statistically close to
independently random bitstrings. Thus, G2 is negligibly close to G1.

Game G3: This game has exactly the same distribution as that of G2. We only change the
order in which some values are sampled, and recognize that certain procedures become iden-
tical to encryption in the single-decryptor scheme ⟨SD.KeyGen, SD.QKeyGen, SD.Enc, SD.Dec⟩
from construction 16. Thus, the probability of winning in G3 is the same as in G2.

• Setup phase:
− The challenger runs SD.KeyGen(1λ) to obtain nX ,0 random cosets {Ai, si, s′i}i∈J1,nX ,0K,

the associated coset states {|Ai,si,s′
i
⟩}i∈J1,nX ,0K and the obfuscated membership

programs {(P0
i ,P1

i)}i∈J1,nX ,0K. Let | sk⟩ := {|Ai,si,s′
i
⟩}i∈J1,nX ,0K.

− The challenger samples ki ←$ Ki for i ∈ {1, 2, 3} and generates the obfuscated
program R̂← iO(R).

− The challenger samples z ←$ {0, 1}nZ and sends | k1
⟩ :=

(
{|Ai,si,s′

i
⟩}i∈J1,nX ,0K, R̂

)
and z to A.

• Splitting phase: A prepares a bipartite quantum state | ∗⟩12, then sends | ∗⟩1 to B
and | ∗⟩2 to C.

• Challenge phase:
− The challenger samples random coins r ←$ {0, 1}poly(λ) for encryption.
− The challenger samples two (message, random coins) pairs ((z1, r1), (z2, r2))←$
D(z,r).

− The challenger computes (x1,Q1)← Enc(pk, z1; r1) and (x2,Q2)← Enc(pk, z2; r2).

− The challenger sends GenTrigger(x(0)
1 , z1) to B and GenTrigger(x(0)

2 , z2) to C.
Let b∗1 denotes the output of B, and b∗2 denotes the output of C. B makes a correct
guess if b∗1 = 1 and z1 = z, or if b∗1 = 0 and z1 ̸= z. Similarly, C makes a correct guess
if b∗2 = 1 and z2 = z, or if b∗2 = 0 and z2 ̸= z. A, B, and C win the game if both B
and C make a correct guess.

Reduction from single-decryptor’s piracy game for the product distribution.
We reduce the game G3 to the real-or-random anti-piracy game of the single-decryptor
(construction 16), both with respect to the challenge distribution D. Assume that there
exists a triple of QPT adversaries (A,B, C) who wins the last hybrid G3 with respect to
the product distribution with advantage δ. We construct a QPT adversary (A′,B′, C ′) who
wins the real-or-random anti-piracy game of the single-decryptor scheme of construction 16
with the same advantage δ.

• A′, on input a quantum key | sk⟩ and the associated public key pk:

− samples ki ← Ki for i ∈ {1, 2, 3} and use these keys and pk to prepare the
obfuscated program R̂← iO(R);

− samples z ←$ {0, 1}nZ ;

164 Appendix A. Towards Unclonable Cryptography in the Plain Model -
Supplementary Materials

− runs A on (ρsk, R̂, z) to get | ∗⟩12;

− then prepares | ∗∗⟩1 := | ∗⟩1 ⊗ |k2, k3⟩ and | ∗∗⟩2 := | ∗⟩2 ⊗ |k2, k3⟩;

− and finally sends | ∗∗⟩1 to B, | ∗∗⟩2 to C, and the message z to the challenger.

• B′, on input | ∗∗⟩1 and a ciphertext (r,Q):

− computes x′ ← GenTrigger(r; Q);

− runs B on (| ∗⟩1 , x′) and returns the outcome.

• C ′ is defined similarly as B′ by replacing | ∗∗⟩1 by | ∗∗⟩2.

The adversary (A′,B′, C ′) perfectly simulates (A,B, C), and thus (A′,B′, C ′) wins the
real-or-random anti-piracy security of the single-decryptor scheme with the same advantage
δ, which concludes the proof.

A.4 Proof of Theorems 20 and 21

In this section, we formally define our monogamy-of-entanglement property, and prove its
hardness. We also define a computational and parallel version of this property, and prove
its hardness. This section is taken verbatim from Chevalier, Hermouet, and Vu (2024b).

In this section, we present a new monogamy-of-entanglement game for coset states and
prove an upper-bound on the probability of winning this game. Along the way, we present
a BB84 version of this game with the same upper-bound.

A.4.1 The Coset Version
Definition 41 (Monogamy-of-Entanglement Game with Identical Basis (Coset Version)).
This game is between a challenger and a triple of adversaries (A,B, C) - where B and C
are not communicating, and is parametrized by a security parameter λ.

• The challenger samples a subspace A← {0, 1}λ×λ
2 and two vectors (s, s′)← Fn2 ×Fn2 .

Then the challenger prepares the coset state |As,s′⟩ and sends |As,s′⟩ to A.

• A prepares a bipartite quantum state σ12, then sends σ1 to B and σ2 to C.

• The challenger samples b← {0, 1}, then sends (A, b) to both B and C.

• B returns u1 and C returns u2.

We say that B makes a correct guess if (b = 0 ∧ u1 ∈ A+ s) or if (b = 1 ∧ u1 ∈ A⊥ + s′).
Similarly, we say that C makes a correct guess if (b = 0 ∧ u2 ∈ A+ s) or if (b = 1 ∧ u2 ∈
A⊥ + s′). We say that (A,B, C) win the game if both B and C makes a correct guess. For
any triple of adversaries (A,B, C) and any security parameter λ ∈ N for this game, we
note MoEcoset(1λ,A,B, C) the random variable indicating whether (A,B, C) win the game
or not.

A.4. Proof of Theorems 20 and 21 165

We note that there is a trivial way for a triple of adversaries to win this game with
probability 1/2, by applying the following strategy. A samples a random bit b∗. A
measures |As,s′⟩ in the computational basis if b∗ = 0, or in the Hadamard basis if b∗ = 1.
In both cases, A sends the outcome u to both B and C. Regardless of the value of A and
b, B and C both return u. Because when b∗ = b (which happens with probability 1/2),
the outcome of the measurement is a vector of the expected coset space, the adversaries
win the game with probability 1/2. In the rest of this section we prove that no triple of
adversaries can actually win the game with a probability significantly greater than 1/2.

Theorem 27. There exists a negligible function negl(·) such that, for any triple of
algorithms (A,B, C) and any security parameter λ ∈ N, Pr

[
MoEcoset(1λ,A,B, C) = 1

]
≤

1/2 + negl(λ).

The proof of this theorem is given in subsequent sections.

A.4.2 The BB84 Version
We introduce below the BB84 version of this game. We show in the following that it is
sufficient to study the BB84 version (which is simpler) to prove Theorem 27, as any triple
of adversaries for the BB84 version can be turned into a triple of adversaries for the coset
version without changing the probability of winning.

Notations. Through all Appendix A.4.2 and Appendix A.4.3, we use the following
notations. Let n ∈ N, we note Θn := {θ ∈ {0, 1}n : |θ| = n/2} - where |·| denotes the
Hamming weight - and N :=

(
n
n/2

)
. Thus, Θλ has exactly N elements.

Definition 42 (Monogamy-of-Entanglement Game with Identical Basis (BB84 Version)).
This game is between a challenger and a triple of adversaries (A,B, C) - where B and C
are non-communicating, and is parametrized by a security parameter λ. An illustration of
this game is depicted in Figure A.3.

• The challenger samples x← {0, 1}λ and θ ← Θλ. Then the challenger prepares the
state |xθ⟩ := ⊗

i∈J1,λK
Hθi |xi⟩ and sends |xθ⟩ to A.

• A prepares a bipartite quantum state σ12, then sends σ1 to B and σ2 to C.

• The challenger samples b← {0, 1}, then sends (θ, b) to both B and C.

• B returns x1 and C returns x2.

Let xTb
:= {xi | θi = b}. We say that (A,B, C) win the game if x1 = x2 = xTb

. For any
triple of adversaries (A,B, C) and any security parameter λ ∈ N for this game, we note
MoEBB84(1λ,A,B, C) the random variable indicating whether (A,B, C) win the game or
not.

We note that the trivial strategy for the coset version can be easily adapted for the
BB84 one. Hence, the greatest probability of winning this game is also lower bounded by
1/2.

166 Appendix A. Towards Unclonable Cryptography in the Plain Model -
Supplementary Materials

Challenger
x← {0, 1}λ

θ ← Θλ

b← {0, 1}

A
|xθ⟩

B
σ1

(θ, b)

x1

Cσ2

(θ, b)

x2

Winning Condition:
x1 = x2 = xTb

Figure A.3: Monogamy-of-Entanglement Game with Identical Basis (BB84 Version)

Theorem 28. There exists a negligible function negl(·) such that, for any triple of
algorithms (A,B, C) and any security parameter λ ∈ N, Pr

[
MoEBB84(1λ,A,B, C) = 1

]
≤

1/2 + negl(λ).
Proof of Theorem 27 follows similarly as that of Culf and Vidick (2022), in which the

winning probability of cloning adversaries in the monogamy-of-entanglement game of coset
states reduces to the winning probability of the adversaries in the game of BB84 states.
We thus provide the proof of Theorem 28 below.

A.4.3 Proof of Theorem 28
This proof follows the same structure as Culf and Vidick (2022). We can separate the
proof in four main steps.

1. In the first step, we define the extended non-local game Johnston, Mittal, Russo, and
Watrous (2016) associated the monogamy-of-entanglement game (BB84 version), and
show that the greatest winning probability of the monogamy game is the same as
the one of this extended non-local game. This step allows us to use a technique from
Tomamichel, Fehr, Kaniewski, and Wehner (2013) to bound the winning probability.

2. In the second step, we express any strategy for this extended non-local game with
security parameter n ∈ N as a tripartite quantum state ρ012 as well as two families of
projective measurements, {Bθ,b} and {Cθ,b}, both indexed by θ ∈ Θn and b ∈ {0, 1}.
We define the projector Πθ,b = ∑

x∈{0,1}n |x⟩⟨x|θ ⊗Bθ,b
xTb
⊗ Cθ,b

xTb
such that the winning

probability of this strategy is pwin = Eθ,b [Tr (Πθ,b ρ012)]. Then, we show the following
upper-bound:

pwin ≤
1

2N
∑

1≤k≤N
α∈{0,1}

max
θ,b

∥∥∥Πθ,bΠπk,α(θ∥b)∥

= 1
2 + 1

2N
∑

1≤k≤N
max
θ,b

∥∥∥Πθ,bΠπk,1(θ∥b)∥

A.4. Proof of Theorems 20 and 21 167

where {πk,α}k∈J1,NK,α∈{0,1} is a family of permutations to be defined later in the proof.

3. In the third step, we show that the quantity ∥Πθ,b Πθ′,b′∥ is upper-bounded by a
small quantity as long as b′ ̸= b.

4. Finally, in the fourth step, we show that there exists a family of permutations such
that, when α = 0, πk,α(θ, b) = (θ′, b′) for some θ′ and b′ ̸= b, and conclude the proof.

Step 1: extended non-local game. We define the following extended non-local game,
and show that any triple of adversaries that win the monogamy-of-entanglement game
with same basis (BB84 version) with probability p can be turned into another triple of
adversaries that win this extended non-local game with the same probability p.

Definition 43 (Extended Non-Local Game). This game is between a challenger and two
adversaries A and B, and is parametrized by a security parameter λ.

• B and C jointly prepare a quantum state ρ012 - where ρ0 is a λ-qubits quantum state,
then send ρ0 to the challenger. B and C keep ρ1 and ρ2 respectively. From this step
B and C cannot communicate.

• The challenger samples θ ← Θn and b← {0, 1}. Then, for all i ∈ J1, λK, the challenger
measures the ith qubit of ρ0 in computational basis if θi = 0 or in Hadamard basis if
θi = 1. Let m ∈ {0, 1}n denote the measurement outcome. Finally, the challenger
sends (θ, b) to B and C.

• B returns m1 and C returns m2.

Let mTb
:= {mi | θi = b}. We say that (B, C) win the game if m1 = m2 = mTb

.

Lemma 3. Let n ∈ N and (A,B, C) a triple of adversaries for the monogamy-of-
entanglement game (Definition 42) parametrized by n, that win with probability pn.
Then there exists a quantum state ρ012 and a pair of adversaries (A′1,A′2) for the extended
non-local game (Definition 43) that win with the same probability pn.

Proof. Consider a triple of adversaries for the monogamy-of-entanglement game (Defi-
nition 42), parametrized by n ∈ N, that win with probability pn. We can model these
adversaries as a CPTP map Φ : H0 → H1 ×H2, and POVMs families {Bθ,b} and {Cθ,b},
both indexed by θ ∈ Θn and b ∈ {0, 1}. Then we have

pn = E
θ∈Θn
b∈{0,1}

E
x∈{0,1}n

Tr
[
(Bθ,b

xTb
⊗ Cθ,b

xTb
)Φ(|xθ⟩⟨xθ|)

]
.

The strategy for the extended non-local game is as follows. B and C prepare the bipartite
state ρ00′ = ⊗

1≤i≤n |ϕ+⟩⟨ϕ+| where ϕ+ denotes the EPR state (|00⟩+ |11⟩)/
√

2, and where
ρ0 (resp. ρ0′) is composed of the first halves (resp. second halves) of these EPR states.
Then, they apply Φ to ρ0′ . Let ρ012 denotes the resulting state. They send ρ0 to the
challenger, B keeps ρ1 and C keeps ρ2. Later, when B receives (θ, b), from the challenger,
B applies the POVM Bθ,b to ρ1 and returns the outcome. C does the same with POVM
Cθ,b and ρ2. The probability of winning of such strategy is then

p′n = E
θ∈Θn
b∈{0,1}

∑
x∈{0,1}n

Tr
[(
|xθ⟩⟨xθ| ⊗Bθ,b

xTb
⊗ Cθ,b

xTb

)
ρ012

]
. (A.1)

168 Appendix A. Towards Unclonable Cryptography in the Plain Model -
Supplementary Materials

We do the following calculation.

Tr
[(
|xθ⟩⟨xθ| ⊗Bθ,b

xTb
⊗ Cθ,b

xTb

)
ρ012

]
= 1

2n

∑
r,r′∈{0,1}n

Tr
[(
|xθ⟩⟨xθ| ⊗Bθ,b

xTb
⊗ Cθ,b

xTb

)
(|r⟩⟨r′| ⊗ Φ (|r⟩⟨r′|))

]
= 1

2n

∑
r,r′∈{0,1}n

⟨r|xθ⟩ ⟨xθ|r′⟩Tr
[(
Bθ,b

xTb
⊗ Cθ,b

xTb

)
Φ (|r⟩⟨r′|)

]
= 1

2n

∑
r,r′∈{0,1}n

Tr
[(
Bθ,b

xTb
⊗ Cθ,b

xTb

)
Φ
(
|r⟩ ⟨r|xθ⟩ ⟨xθ|r′⟩ ⟨r′|

)]

= 1
2n
Tr

(Bθ,b
xTb
⊗ Cθ,b

xTb

)
Φ

 1
2n

∑
r∈{0,1}n

|r⟩⟨r| |xθ⟩⟨xθ| 1
2n

∑
r′∈{0,1}n

|r′⟩⟨r′|


= 1

2n
Tr
[(
Bθ,b

xTb
⊗ Cθ,b

xTb

)
Φ
(
|xθ⟩⟨xθ|

)]
By plugging this result into Equation (A.1), we get p′n = pn, which concludes the proof.

Step 2: first upper-bound of the winning probability. We prove an upper-bound
for the extended non-local game above. We need the following lemma.
Lemma 4 (Lemma 2 of Tomamichel, Fehr, Kaniewski, and Wehner (2013)). Let Π1, . . . ,Πn

be projective positive semi-definite operators on a Hilbert space, and {πi}i∈J1,nK be a set of
orthogonal permutations for some integer n. Then∥∥∥∥ n∑

i=1
Πi

∥∥∥∥ ≤ n∑
i=1

max
j∈J1,nK

∥∥∥ΠjΠπi(j)
∥∥∥

Let
(
{Bθ,b}θ∈Θn,b∈{0,1}, {Cθ,b}θ∈Θn,b∈{0,1}, ρ012

)
be a strategy for the extended non-local

game. Using Naimark’s dilation theorem, we can assume without loss of generality
that the Bθ,b and Cθ,b are all projective. Let Πθ,b be the following projector: Πθ,b :=∑
x∈{0,1}n |x⟩⟨x|θ ⊗Bθ,b

xTb
⊗ Cθ,b

xTb
. Then the winning probability of this strategy is

pwin = E
θ∈Θn,b∈{0,1}

Tr (Πθ,b ρ012)

≤ E
θ∈Θn,b∈{0,1}

∥Πθ,b∥

≤ 1
2N

∑
1≤k≤N
α∈{0,1}

max
θ,b

∥∥∥Πθ,bΠπk,α(θ,b)∥ (A.2)

where the first inequality follows from the definition of the norm and the second from
Lemma 4; and where {πk,α}k∈J1,NK,α∈{0,1} is a family of mutually orthogonal permutations.

Step 3: upper-bound of ∥Πθ,bΠθ′,1−b∥. In this part, we show that for all (θ, θ′) ∈ Θn

and all b ∈ {0, 1}, we can upper-bound ∥Πθ,bΠθ′,1−b∥ by a small quantity.
Let (θ, θ′) ∈ Θ2

n and b ∈ {0, 1}. Note R := {i ∈ J1, NK : θi ̸= θ′i}, T := {i ∈ J1, NK :
θi = b}, T ′ := {i ∈ J1, NK : θ′i = 1− b} and S := {i ∈ R : θi = b and θ′i = 1− b}. We
define P̄ and Q̄ as follows:

P̄ :=
∑

xT∈{0,1}T

Hb|xS⟩⟨xS|Hb ⊗ IS̄ ⊗Bθ,b
xT
⊗ IC

Q̄ :=
∑

xT ′∈{0,1}T ′
H1−b|xS⟩⟨xS|H1−b ⊗ IS̄ ⊗ Cθ′,1−b

xT ′ ⊗ IB

A.4. Proof of Theorems 20 and 21 169

where |xS⟩⟨xS| denotes the subsystem of |xT ⟩⟨xT | whose indices belong to S, and IS̄ denotes
the rest of the system.

Remark that we have:

∥Πθ,bΠθ′,1−b∥2 = ∥Πθ′,1−bΠθ,bΠθ′,1−b∥
≤ ∥Πθ′,1−bP̄Πθ′,1−b∥
= ∥P̄Πθ′,1−bP̄∥
≤ P̄Q̄P̄

where we have the first line because Πθ,b is a projection, the second because Πθ,b ≤ P̄, the
third because Πθ,b and P̄ are projections and the last because Πθ′,1−b ≤ Q̄.

Consider now the quantity P̄Q̄P̄. We compute the following upper-bound for P̄Q̄P̄:

P̄Q̄P̄ =
∑

xT ,zT∈{0,1}T

yT ′∈{0,1}T ′

Hb|xS⟩⟨xS|HbH1−b|yS⟩⟨yS|H1−bHb|zS⟩⟨zS|Hb ⊗ IS̄ ⊗Bθ,b
xT
Bθ,b
zT
⊗ Cθ′,1−b

yT ′

=
∑

xT∈{0,1}T

yT ′∈{0,1}T ′

Hb|xS⟩⟨xS|HbH1−b|yS⟩⟨yS|H1−bHb|xS⟩⟨xS|Hb ⊗ IS̄ ⊗Bθ,b
xT
⊗ Cθ′,1−b

yT ′

= 2−|S|
∑

xT∈{0,1}T

yT ′∈{0,1}T ′

Hb|xS⟩⟨xS|Hb ⊗ IS̄ ⊗Bθ,b
xT
⊗ Cθ′,1−b

yT ′

= 2−|S|
∑

xT∈{0,1}T

Hb|xS⟩⟨xS|Hb ⊗ IS̄ ⊗Bθ,b
xT
⊗ IC

where the first equality comes from Bθ,b
xT
Bθ,b
zT

= Bθ,b
xT

if xT = zT and 0 otherwise; the second
comes from ⟨xS|HbH1−b|yS⟩⟨yS|H1−bHb |xS⟩ = |⟨xS|H |yS⟩|2 = 2−|S| for all xT , yT ′ and the
third from ∑

yT ′ C
θ′,1−b
yT ′ = IC . Notice that we can assume without loss of generality that

|S| is larger than |R|/2: if it is not the case, we just swap the roles of θ and θ′. Thus, by
linearity and from ∑

xT
Bθ,b
xT

= IB, it comes ∥P̄Q̄P̄∥ ≤ 2−|S| ≤ 2−|R|/2 hence

∥Πθ,bΠθ′,1−b∥ ≤ 2−|R|/4 (A.3)

Remark 5. Remark that, when considering ∥Πθ,bΠθ′,b∥ instead, we have S = ∅. Thus,
the reasoning above yields the trivial upper-bound

∥Πθ,bΠθ′,b∥ ≤ 1 (A.4)

Step 4: finding the permutation family. In this part, we construct a family of
mutually orthogonal permutations {πk,α}k∈J1,NK,α∈{0,1} such for all k ∈ J1, NK, πk,0 “flips”
the last input’s bit and πk,1 leaves it unchanged.

We use the following lemma, proven in Culf and Vidick (2022).

Lemma 5 (Lemma 3.4 of Culf and Vidick (2022)). Let n be an even integer, Θn := {θ ∈
{0, 1}n : |θ| = n/2} and N =

(
n
n/2

)
. Then there is a family of N mutually orthogonal

permutations {π̃k}k∈J1,NK of Θn such that the following holds. For each i ∈ J1, n/2K, there
are exactly

(
n/2
i

)2
permutations π̃k such that the number of positions at which θ and π̃k(θ)

are both 1 is n/2− i.

170 Appendix A. Towards Unclonable Cryptography in the Plain Model -
Supplementary Materials

We prove the following corollary.

Corollary 6. Let n be an even integer, Θn := {θ ∈ {0, 1}n : |θ| = n/2} and N =
(
n
n/2

)
.

Then there is a family of 2N mutually orthogonal permutations {πk,α}k∈J1,NK,α∈{0,1} of
Θn × {0, 1} such that the two following properties hold.

• For each i ∈ J1, n/2K, there are exactly
(
n/2
i

)2
permutations πk,0 such that the number

of positions at which θ and θ′ are both 1 is n/2− i (i.e. θ and θ′ differ in 2i positions).

• If α = 0, then b′ = 1− b. Otherwise, b′ = b.

where we use the notation (θ′∥b′) := πk,α(θ∥b).

Proof. Let {π̃k}k∈J1,NK be a family of orthogonal permutations promised in Lemma 5.
Define the family {πk,α}k∈J1,NK,α∈{0,1} as follows. For all k ∈ J1, NK:

πk,0(θ||b) = π̃k(θ)||(1− b)
πk,1(θ||b) = π̃k(θ)||b

The two properties follow directly by construction. It remains to prove that these 2N
permutations are mutually orthogonal. Assume πk,α(θ) = πk′,α′(θ). Then we have α = α′,
and π̃k(θ) = π̃k′(θ), hence k = k′ because {π̃k}k is a family of orthogonal permutations.

Concluding the proof. We make use of the following lemma from Culf and Vidick
(2022).

Lemma 6 (Lemma 3.6 of Culf and Vidick (2022)). Let n ≥ 2 an integer, and note
N =

(
n
n/2

)
. Then we have

1
N

n/2∑
i=0

(
n/2
i

)2

2−i/2 ≤
√
e
(

cos π8

)n

The rest of the proof follows easily. We first rewrite Equation (A.2) as

pwin ≤
1

2N

N∑
k=1

max
θ,b

∥∥∥Πθ,bΠπk,1(θ,b)∥+ 1
2N

N∑
k=1

max
θ,b

∥∥∥Πθ,bΠπk,0(θ,b)∥

Then, by plugging the permutation’s family of Corollary 6, and using the upper-bounds
proved in Equation (A.3) and Equation (A.4), it comes

pwin ≤
1
2 + 1

2N

n/2∑
i=1

2−i/2

≤ 1
2 +
√
e

2

(
cos π8

)n
.

A.4. Proof of Theorems 20 and 21 171

A.4.4 Computational Version
We provide below a computational version of the monogamy-of-entanglement with iden-
tical basis. The only difference is that the adversaries are given access to obfuscated
membership programs for the coset space and its dual. This game is still hard to win with
probability significantly greater than 1/2 if we make the assumption that the adversaries
are polynomially bounded. The proof of this statement follows directly from the proof of
hardness of the computational version of the regular monogamy-of-entanglement game
Coladangelo, Liu, Liu, and Zhandry (2021).

Definition 44 (Computational Monogamy-of-Entanglement Game with Identical Basis
(Coset Version)). This game is between a challenger and a triple of adversaries (A,B, C) -
where B and C are not communicating, and is parametrized by a security parameter λ.

• The challenger samples a subspace A ← {0, 1}λ×λ
2 and two vectors (s, s′) ← Fn2 ×

Fn2 . Then the challenger prepares the coset state |As,s′⟩ as well as two obfuscated
membership programs P̂A+s := iO(A + s) and P̂A⊥+s′ := iO(A⊥ + s′) and sends(
|As,s′⟩ , P̂A+s, P̂A⊥+s′

)
to A.

• A prepares a bipartite quantum state σ12, then sends σ1 to B and σ2 to C.

• The challenger samples b← {0, 1}, then sends (A, b) to both B and C.

• B returns u1 and C returns u2.

For i ∈ {1, 2}, we say that Ai makes a correct guess if (b = 0 ∧ u′i ∈ A + s) or if
(b = 1 ∧ u′i ∈ A⊥ + s′). We say that (A,B, C) win the game if both B and C makes a
correct guess. For any triple of adversaries (A,B, C) and any security parameter λ ∈ N
for this game, we note MoEcoset(comp)(1λ,A,B, C) the random variable indicating whether
(A,B, C) win the game or not.

Theorem 29. There exists a negligible function negl(·) such that, for any triple of QPT al-
gorithms (A,B, C) and any security parameter λ ∈ N, Pr

[
MoEcoset(comp)(1λ,A,B, C) = 1

]
≤

1/2 + negl(λ).

A.4.5 Parallel Repetition of the Game
For our proof of anti-piracy of copy-protection, we actually need a parallel version of this
game, where the challenger samples κ ∈ N independent cosets and an independent basis
choice for each coset; and the adversaries are supposed to return a vector in the correct
space for all the cosets to win the game. We show that the winning probability of this
game is negligible.

Definition 45 (κ-Parallel Computational Monogamy-of-Entanglement Game with Identi-
cal Basis (Coset Version)). This game is between a challenger and a triple of adversaries
(A,B, C) - where B and C are not communicating, and is parametrized by a security
parameter λ.

• The challenger samples κ subspaces {Ai}i∈J1,κK and κ pairs of vectors {(si, s′i)}i∈J1,κK

where Ai ← {0, 1}λ×
λ
2 and (si, s′i)← Fn2 × Fn2 for all i ∈ J1, κK. Then the challenger

172 Appendix A. Towards Unclonable Cryptography in the Plain Model -
Supplementary Materials

prepares the coset states {|Ai,si,s′
i
⟩}i∈J1,κK as well as the associated obfuscated mem-

bership programs P̂Ai+si
:= iO(Ai + si) and P̂A⊥

i +s′
i

:= iO(A⊥i + s′i) for i ∈ J1, κK; and
sends

(
{|Ai,si,s′

i
⟩}i∈J1,κK, {P̂Ai+si

, P̂A⊥
i +s′

i
}i∈J1,κK

)
to A.

• A prepares a bipartite quantum state σ12, then sends σ1 to B and σ2 to C.

• The challenger samples r ← {0, 1}κ, then sends {Ai}i∈J1,κK and r to both B and C.

• B returns κ vectors {ui}i∈J1,κK and C returns κ vectors {u′i}i∈J1,κK.

We say that B makes a correct guess if (ri = 0 ∧ ui ∈ Ai+si) or if (ri = 1 ∧ ui ∈ A⊥i +s′i)
for all i ∈ J1, κK. Similarly, we say that C makes a correct guess if (ri = 0 ∧ u′i ∈ Ai + si)
or if (ri = 1 ∧ u′i ∈ A⊥i + s′i) for all i ∈ J1, κK. We say that (A,B, C) win the game if both
B and C makes a correct guess. For any triple of adversaries (A,B, C) and any security
parameter λ ∈ N for this game, we note κ−MoEcoset(comp)(1λ,A,B, C) the random variable
indicating whether (A,B, C) win the game or not.

Theorem 30. There exists a negligible function negl(·) such that, for any triple of QPT algo-
rithms (A,B, C) and any security parameter λ ∈ N, Pr

[
κ−MoEcoset(comp)(1λ,A,B, C) = 1

]
≤

negl(λ).

Comparison with Cakan, Goyal, Liu-Zhang, and Ribeiro (2024). In Cakan,
Goyal, Liu-Zhang, and Ribeiro (2024), the authors also present a new monogamy-of-
entanglement game for coset states. Their game is similar too our parallel version except
that, instead of receiving the same challenge bitstring r, B and C receive respectively r1
and r2, two independently sampled challenge bitstrings, and must answer accordingly.
Note that the hardness of the parallel version of our game can be proven using lemma 18 of
Ananth, Kaleoglu, and Liu (2023) on their game2. We still provide a direct proof for this
theorem in Appendix A.4.6 for completeness. We emphasize that for the single-instance
version, however, the same lemma cannot be applied.

A.4.6 Proof of Parallel Version of the Monogamy Game
In this subsection, we prove Theorem 30. We do it by proving that a parallel version
of the BB84 version of the monogamy game has negligible security, as the coset version
follows as for the single instance. As the proof follows the same structure as the one of
Theorem 28, we only describe here the important steps of the proof.

Step 1: extended non-local game. We first describe the extended non-local game for
this parallel version of the game. This game is between a challenger and two adversaries
A and B, and is parametrized by a security parameter λ and a number of repetitions
κ := poly(λ).

• B and C jointly prepare a quantum state ρ012 - where ρ0 is composed of κ λ-qubits
registers, denoted as ρ1

0, . . . , ρ
κ
0 - then send ρ0 to the challenger. B and C keep ρ1

and ρ2 respectively. From this step B and C cannot communicate.
2We thank Alper Çakan and Vipul Goyal for pointing out this shorter proof.

A.4. Proof of Theorems 20 and 21 173

• For j ∈ J1, κK, the challenger samples θj ← Θn, then the challenger samples r ←
{0, 1}κ. Then, for all i ∈ J1, λK and j ∈ J1, κK, the challenger measures the ith

qubit of ρj0 in computational basis if θji = 0 or in Hadamard basis if θji = 1. Let
mj ∈ {0, 1}n denote the measurement outcome for every j. Finally, the challenger
sends θ := (θ1, . . . , θκ) and r to B and C.

• B returns {mj
1}j∈J1,κK and C returns {mj

2}j∈J1,κK.

Let mj
Trj

:= {mj
i | θ

j
i = rj}. We say that (B, C) win the game if mj

1 = mj
2 = mTrj

for all
j ∈ J1, κK.

Step 2: first upper-bound. Let θ = (θ1, ..., θκ), we define Πθ,r :=
κ⊗
j=1

∑
x∈{0,1}n |x⟩⟨x|θ

j

⊗

Bθ,r
xTr
⊗ Cθ,r

xTr
. We then prove in the same way as in Theorem 28 that

pwin ≤
1

(2N)κ
∑

k=k1∥...∥kκ

1≤kj≤N ∀j
α∈{0,1}κ

max
θ,r

∥∥∥Πθ,rΠπk,α(θ,r)∥

where {πk,α} is a family of mutually orthogonal permutations indexed by k = k1∥ . . . ∥kκ -
where each kj ∈ J1, NK - and r ∈ {0, 1}κ.

Step 3: upper-bound of ∥Πθ,rΠθ′,r̄∥. Let θ = (θ1, ..., θκ) and θ′ = (θ′1, ..., θ
′κ) where

each θj and θ
′j belongs to Θn. Let r ∈ {0, 1}κ. For every j ∈ J1, κK, note Rj := {i ∈

J1, NK : θji ̸= θ
′j
i }, T j := {i ∈ J1, NK : θji = rj}, T

′j := {i ∈ J1, NK : θ
′j
i = 1− rj} and

Sj := {i ∈ R : θji = rj and θ
′j
i = 1− rj}. We define P̄ and Q̄ as follows:

P̄ =
∑

j∈J1,κK
x

T j∈{0,1}T j

κ⊗
j=1

Hrj |xSj⟩⟨xSj |Hrj ⊗ IS̄j ⊗Bθ,r
xT
⊗ IC

Q̄ =
∑

j∈J1,κK

x
T

′j∈{0,1}T
′j

κ⊗
j=1

H1−rj |xSj⟩⟨xSj |H1−rj ⊗ IS̄j ⊗ IB ⊗ Cθ′,1−r̄
xT ′

where T := T 1∥ . . . ∥T κ, |xSj⟩⟨xSj | denotes the subsystem of |xT j⟩⟨xT j | whose indices belong
to Sj, and IS̄j denotes the rest of the system.

Following the same reasoning as in Theorem 28 (step 3), it comes

∥Πθ,rΠθ′,r̄∥ ≤ 2−
∑

j
|Rj |

4

Step 4: finding the permutation family. Let {π⋆k,α}k∈J1,NK,α∈{0,1} denotes the per-
mutation family defined in step 4 of Theorem 28. We define the permutation fam-
ily {πk,β} - indexed by k = k1∥ . . . ∥kκ where each kj ∈ J1, NK and β ∈ {0, 1}κ - as
πk,r(θ1∥ . . . ∥θκ, r) = π⋆k1,β1(θ1, r1)∥ . . . ∥π⋆kκ,βκ

(θκ, rκ). It is easy to see that this family is
orthogonal and has the same required properties as in the single instance proof, that is
that for every j ∈ J1, κK and i ∈ J1, n/2K, there are exactly

(
n/2
i

)2
permutations πk,0 such

174 Appendix A. Towards Unclonable Cryptography in the Plain Model -
Supplementary Materials

that the number of positions at which θj and θ
′j are both 1 is n/2 − i (i.e. |Rj| = 2i).

Using this set of permutations we have:

pwin ≤
1

(2N)κ
∑

k=k1∥...∥kκ

β∈{0,1}κ

max
θ=θ1∥...,∥θκ

r∈{0,1}κ

∥Πθ,rΠθ′,r′∥

= 1
(2N)κ

κ∑
w=0

∑
k=k1∥...∥kκ

β∈{0,1}κ,|β|=w

max
θ=θ1∥...,∥θκ

r∈{0,1}κ

∥Πθ,rΠθ′,r′∥

≤ 1
(2N)κ

κ∑
w=0

(
κ

w

)n/2∑
ℓ=0

(
n/2
ℓ

)2

2−ℓ/2

w

= 1
(2N)κ

1 +
n/2∑
ℓ=0

(
n/2
ℓ

)2

2−ℓ/2

κ

≤ 1
(2N)κ

1 +
(
n/2
n/4

)2 n/2∑
ℓ=0

2−ℓ/2

κ

= 1
(2N)κ

1 +
(
n/2
n/4

)2 1− 2−n/4−1/2

1− 2−1/2

κ

Where in the first equality, we split the sum over the possible weights of β; the first
inequality comes from Corollary 6; we obtain the second equality by applying the binomial
theorem; the second inequality comes from

(
n
k

)
≤
(
n
n/2

)
for all n, k; and the last inequality

comes from the fact that the sum is the sum of a geometric series.
Using both Stirling approximation and asymptotic development of logarithm, we get

that the logarithm of this last inequality decreases linearly in k, meaning that the upper
bound is negligible in n which concludes the proof.

Appendix

B
Semi-Quantum Unclonable
Cryptography - Supplementary
Materials

Most of this appendix is taken verbatim from our work (Chevalier, Hermouet, and Vu
(2023)). We provide the detailed proofs for the different security properties of protocols 2
to 5. For convenience, we also provide in Appendix B.2 the definitions and protocols in
the way they are presented in the original paper (Chevalier, Hermouet, and Vu (2023)),
and useful preliminaries in Appendix B.1.

B.1 Preliminaries
In this section, we define decoding maps for extended trapdoor claw-free functions,
provide lemmas used in the proofs of this appendix, and describe the sample-and-estimate
framework of Bouman and Fehr (2010).

B.1.1 Extended Trapdoor Claw-free Functions
Our remote state preparation protocol is based on a cryptographic primitive called extended
noisy trapdoor claw free function families (ENTCF families), which are defined in Mahadev
(2018, Section 4) and can be constructed from the Learning with Errors assumption Regev
(2005) and Brakerski, Christiano, Mahadev, Vazirani, and Vidick (2018). We use the
same notation as in Mahadev (2018, Section 4), with the exception that we write K0
instead of KG and K1 instead of KF . In addition, we also define the following functions
for convenience:

Definition 46 (Decoding maps, Metger and Vidick (2021, Definition 2.1)).

1. For a key k ∈ K0 ∪ K1, an image y ∈ Y, a bit b ∈ {0, 1}, and a pre-image x ∈ X ,
we define Chk(k, y, b, x) to return 1 if y ∈ Supp(fk,b(x)), and 0 otherwise. (This
definition is as in Mahadev (2018, Definition 4.1 and 4.2).)

2. For a key k ∈ K0 and a y ∈ Y , we define b̂(k, y) by the condition y ∈ ∪x Supp
(
fk,b̂(k,y)(x)

)
.

(This is well-defined because fk,0 and fk,1 form an injective pair.)

3. For a key k ∈ K0 ∪ K1 and a y ∈ Y, we define x̂b(k, y) by the condition y ∈
Supp(fk,b(x̂b(k, y))), and x̂b(k, y) = ⊥ if y /∈ ∪x Supp(fk,b(x)). For k ∈ K0, we also
use the shorthand x̂(k, y) := x̂b̂(k,y)(k, y).

176 Appendix B. Semi-Quantum Unclonable Cryptography -
Supplementary Materials

4. For a key k ∈ K1, a y ∈ Y, and a d ∈ {0, 1}w, we define û(k, y, d) by the condition
d · (x̂0(k, y)⊕ x̂1(k, y)) = û(k, y, d).

The above decoding maps applied to vector inputs are understood to act in an element-
wise fashion. For example, for k⃗ ∈ K×n1 , y⃗ ∈ Y×n, and d⃗ ∈ {0, 1}w×n, we denote by
û(k⃗, y⃗, d⃗) ∈ {0, 1}n the string defined by

(
û(k⃗, y⃗, d⃗)

)
i

:= û(ki, yi, di).

B.1.2 Sampling in a Quantum Population
In this section, we describe a generic framework presented in Bouman and Fehr (2010) for
analyzing cut-and-choose strategies applied to quantum states.

Classical Sampling Strategies

Let q := (q1, . . . , qn) ∈ Ωn be a string of length n. We consider the problem of estimating
the relative Hamming weight of a substring ω(q|t) by only looking at the substring q|t
of q, for a subset t ⊂ J1, nK. We consider sampling strategies Ψ := (PT , PS, f), where PT
is an (independently sampled) distribution over subsets t ⊆ J1, nK, PS is a distribution
over seeds s ∈ S, and f : {(t, v) : t ⊂ J1, nK, v ∈ Ωt} × S → R is a function that takes the
subset t, the substring v, and a seed s, and outputs an estimate for the relative Hamming
weight of the remaining string. For a fixed subset t, seed s, and a parameter δ, define
Bδ
t,s(Ψ) ⊆ Ωn as

Bδ
t,s := {b ∈ Ωn : |ω(b|t)− f(t, b|t, s)| < δ}.

Then we define the classical error probability of strategy Ψ as follows.

Definition 47 (Classical Error Probability). The classical error probability of a sampling
strategy Ψ := (PT , PS, f) is defined as the following value, parameterized by 0 < δ < 1:

εδclassical(Ψ) := max
q∈Ωn

Pr
t←PT ,s←PS

[
q /∈ Bδ

t,s(Ψ)
]
.

Quantum Sampling Strategies

Now, let A := A1, . . . , An be an n-partite quantum system where the state space of each
system Ai equals HAi

= Cd with d = |Ω|, and let {|a⟩}a∈Ω be a fixed orthonormal basis
of Cd. A may be entangled with another system E, and we write the purified state
on A and E as |ψ⟩AE. We consider the problem of testing whether the state on A is
close to the all-zero reference state |0⟩A1

. . . |0⟩An
. There is a natural way to apply any

sampling strategy Ψ = (PT , PS, f) to this setting: sample t, s according to PT , PS, measure
subsystems Ai for i ∈ J1, tK in basis {|a⟩}a to observe q|t ∈ Ω|t|, and compute an estimate
f(t, q|t, s).

In order to analyze the effect of this strategy, we first consider the mixed state on
registers T (holding the subset t), S (holding the seed s), and A,E that results from
sampling t and s according to PTS := PTPS

ρTSAE :=
∑
t,s

PTS(t, s) |t, s⟩ ⟨t, s|TS ⊗ |ψ⟩ ⟨ψ|AE .

Next, we compare this state to an ideal state, parameterized by 0 < δ < 1, of the form

ρ̃TSAE :=
∑
t,s

PTS(t, s) |t, s⟩ ⟨t, s|TS ⊗ |ψ̃
ts⟩ ⟨ψ̃ts|AE with |ψts⟩AE ∈ span

(
Bδ
t,s

)
⊗HE,

B.1. Preliminaries 177

where

span
(
Bδ
t,s

)
:= span

(
{|b⟩ : b ∈ Bδ

t,s}
)

= span ({|b⟩ : |ω(b|t)− f(t, b|t, s)| < δ}) .

That is, ρ̃TSAE is a state such that it holds with certainty that the state on registers A|tE,
after having measured A|t and observing q|t, is in a superposition of states with relative
Hamming weight δ-close to f(t, q|t, s). This leads us to the definition of the quantum error
probability of strategy Ψ.

Definition 48 (Quantum Error Probability). The quantum error probability of a sampling
strategy Ψ := (PT , PS, f) is defined as the following value, parameterized by 0 < δ < 1:

εδquantum(Ψ) := max
HE

max
|ψ⟩AE

min
ρ̃T SAE

∆ (ρTSAE, ρ̃TSAE) ,

where the first max is over all finite-dimensional registers E, the second max is over all
state |ψ⟩AE and the min is over all ideal state ρ̃TSAE of the form described above.

Finally, we relate the classical and quantum error probabilities.

Theorem 31 (Bouman and Fehr (2010)). For any sampling strategy Ψ and δ > 0,

εδquantum(Ψ) ≤
√
εδclassical(Ψ).

Remark 6. The results presented here immediately generalize from the all-zero reference
state |0⟩ . . . |0⟩ to an arbitrary reference state |φ⟩A of the form |φ⟩A = U1 |0⟩ . . . Un |0⟩ for
unitary operators Ui acting on Cd. Indeed, the generalization follows simply by a suitable
change of basis, defined by the Ui’s.

In this work, we will only need to analyze one simple sample-and-estimate strategy
Ψuniform := (PT , PS, f), where PT is the uniform distribution over subsets t ⊆ J1, nK, PS
is empty and f(t, q|t) = ω(q|t). That is, f receives a uniformly random subset q|t of q,
and outputs the relative Hamming weight of q|t as its guess for the relative Hamming
weight of q|t. The classical error probability of this strategy can be bound using Hoeffding
inequalities, which is done in Bouman and Fehr (2010, Appendix B.3), where it is shown
to be bounded by 4 exp(−nδ2

32) for parameter δ. Thus, we have the following corollary
of Theorem 31.

Corollary 7. The quantum error probability of Ψuniform with parameter δ is

εδquantum(Ψuniform) ≤ 2 exp(−nδ
2

64).

B.1.3 Properties of the State-Dependent Distance
A feature of the state-dependent distance is that if two operators are close in the state-
dependent distance, we can replace one operator by the other acting on either side of the
state.

Lemma 7 (Replacement lemma Metger and Vidick (2021, Lemma 2.21)). Let ψ ∈ Pos(H),
and A,B,C ∈ L(H). If A ≈ϵ,ψ B and ∥C∥∞ = O(1), then

Tr[CAψ] ≈ϵ1/2 Tr[CBψ] , (B.1)
Tr[ACψ] ≈ϵ1/2 Tr[BCψ] . (B.2)

178 Appendix B. Semi-Quantum Unclonable Cryptography -
Supplementary Materials

Lemma 8 (Metger and Vidick (2021, Lemma 2.22)). Let A,B ∈ L(H) be linear operators,
C ∈ L(H) a linear operator with constant operator norm, and ψ ∈ Pos(H) with Tr[ψ] ≤ 1.
Then, the following holds:

A ≈ϵ,ψ B =⇒ AψC ≈ϵ B ψC and C ψA† ≈ϵ C ψB† . (B.3)

The following lemma allows us to replace computationally indistinguishable states
with one another in the state-dependent distance. This means that if two states are
computationally indistinguishable and a state-dependent operator relation holds for one
of the states, we can “lift” this relation to the other state, provided the operators are
efficient.

Lemma 9 (Lifting lemma Metger and Vidick (2021, Lemma 2.25)). Let ψ, ψ′ ∈ D(H)
such that ψ c≈δ ψ′. Let H′ be another Hilbert space with dim(H′) ≥ dim(H). For this
case, let ψ, ψ′ ∈ D(H′) such that ψ c≈δ ψ′. Let A be an efficient binary observable on H,
B an efficient binary observable on H′, and V : H → H′ an efficient isometry. Then:

V AV † ≈ϵ, ψ B =⇒ V AV † ≈ϵ1/4+δ,ψ′ B . (B.4)

Finally, we recall some further miscellaneous properties of the state-dependent distance.

Lemma 10 (Metger and Vidick (2021, Lemma 2.18)). Let ψi ∈ Pos(H) for i ∈ {1, . . . , n}
with constant n, and A,B ∈ L(H). Define ψ = ∑

i ψi. Then:

∀i ∈ J1, nK : A ≈ϵ,ψi
B iff A ≈ϵ,ψ B (B.5)

Lemma 11 (Metger and Vidick (2021, Lemma 2.24)). Let H1,H2 be Hilbert spaces with
dim(H1) ≤ dim(H2) and V : H1 → H2 an isometry. Let A and B be binary observables
on H1 and H2, respectively, ψ ∈ Pos(H1), and ϵ ≥ 0. Then for any b ∈ {0, 1}:

V †BV ≈ϵ,ψ A =⇒ V †B(b)V ≈ϵ,ψ A(b) , (B.6)
B ≈ϵ,V ψV † V AV † =⇒ B(b) ≈ϵ,V ψV † V A(b)V † . (B.7)

B.2 Definitions and Protocols
In this section, we introduce our protocol for remote hidden coset state preparation. We
first give a definition of completeness and soundness in Appendix B.2.1. Our construction
is given in Appendix B.2.2.

B.2.1 Definitions
Definition 49 (Remote Coset State Preparation Protocol). A remote coset state prepara-
tion protocol is an interactive classical communication protocol between a PPT verifier
(or sender, denoted as V) and a QPT prover (or receiver, denoted as P) such that at the
end of the protocol, the verifier obtains a list T ⊂ N of classical description of cosets
{Si, αi, βi}i∈T and the prover outputs a quantum state ψ. The two parties also obtain a
common output which is obfuscated membership checking programs of Si +αi and S⊥i +βi
for all i ∈ T .

B.2. Definitions and Protocols 179

We denote an execution of the protocol as ({Si, αi, βi}i∈T , ψ, {P0,i, P1,i}i∈T)← ⟨P(1λ),V(1λ)⟩,
where P0,i is an obfuscated membership checking program of Si + αi and P1,i is an obfus-
cated membership checking program of S⊥i + βi. Note that {P0,i, P1,i}i∈T is the common
output of both parties. When it is clear from the context, we omit the common output
and just write ({Si, αi, βi}i∈T , ψ)← ⟨P(1λ),V(1λ)⟩.

The protocol is correct if the protocol does not abort and at the end of the execution,
there exists a negligible function ε(λ) such that

Pr
[
ψ ≈ε

⊗
i∈T
|Si,αi,βi

⟩
]
≥ 1− negl(λ),

where the probability is taken over randomness of the verifier V.

We now formally define the notions of soundness of remote coset state preparation proto-
col. We will give two different definitions: one for the monogamy-of-entanglement property
(Definition 50), and another for the direct product hardness property (Definition 51).

Definition 50 (Monogamy-of-Entanglement Soundness). Let ({Si, αi, βi}i∈T , ψ)← ⟨Pλ(ρλ),
V(1λ)⟩ be an execution of a remote coset state preparation protocol between a QPT prover
P = {Pλ, ρλ}λ∈N and a PPT verifier V, after which V outputs {Si, αi, βi}i∈T and P outputs
a state ψ. The prover (now modeled as a triple algorithm (P,B, C)) then interacts with
the verifier in the following monogamy game.

1. The prover applies a CPTP map to split ψ into a bipartite state ψBC ; it sends the
register B to B and the register C to C. No communication is allowed between B
and C after this phase.

2. Question. The verifier sends the description of {Si}i∈T , to both B and C.

3. Answer. B returns s(i)
1 ∈ Fn2 and C returns s(i)

2 ∈ Fn2 for all i ∈ T .

The prover (P,B, C) wins if and only if s(i)
1 ∈ Si + αi and s

(i)
2 ∈ S⊥i + βi for all i ∈ T . Let

SMCosetMonogamy(P, λ) be a random variable which takes the value 1 if the game above
is won by the prover (P,B, C), and takes the value 0 otherwise.

The protocol is secure if the winning probability of any QPT adversary is negligible.
Formally, for any QPT malicious prover, the protocol is computationally sound with the
monogamy-of-entanglement property if

Pr[SMCosetMonogamy(P, λ) = 1] ≤ negl(λ).

Definition 51 (Direct Product Soundness). Let ({Si, αi, βi}i∈T , ψ) ← ⟨Pλ(ρλ),V(1λ)⟩
be an execution of a remote coset state preparation protocol between a QPT prover
P = {Pλ, ρλ}λ∈N and a PPT verifier V, after which V outputs {Si, αi, βi}i∈T and P outputs
a state ψ. The prover then outputs {(vi, wi)i∈T}. The prover wins if and only if for all
i ∈ T , either:

(i) (vi, wi) ∈ (Ai + si)× (Ai + si) and vi ̸= wi;

(ii) or (vi, wi) ∈ (A⊥i + s′i)× (A⊥i + s′i) and vi ̸= wi;

(iii) or (vi, wi) ∈ (Ai + si)× (A⊥i + s′i).

180 Appendix B. Semi-Quantum Unclonable Cryptography -
Supplementary Materials

Let SMDirectProduct(P, λ) be a random variable which takes the value 1 if the game above
is won by the prover P, and takes the value 0 otherwise.

The protocol is secure if the winning probability of any QPT adversary is negligible.
Formally, for any QPT malicious prover, the protocol is computationally sound with the
direct product hardness property if

Pr[SMDirectProduct(P, λ) = 1] ≤ negl(λ).

B.2.2 Construction
Notation. Our protocol 6 and protocol 7 will be (almost) a parallel repetition of a
sub-protocol. We make use of vector notation to denote tuples of items corresponding to
the different copies of the sub-protocol. For example, if each of the n parallel sub-protocols
requires a key ki, we denote k⃗ = (k1, . . . , kn). A function that takes as input a single value
can be extended to input vectors in the obvious way: for example, if f takes as input a
single key k, then we write f(k⃗) for the vector (f(k1), . . . , f(kn)). We will also use 0⃗ and
1⃗ for the bit strings consisting only of 0 and 1, respectively (and whose length will be
clear from the context), and 1⃗i ∈ {0, 1}n for the bit string whose i-th bit is 1 and whose
remaining bits are 0. Let n the length of a vector in a coset state (i.e., if v ∈ A then
|v| = n). In our constructions below, we set n := 2λ.

Ingredients. Our constructions use the following building blocks:
• A quantum hybrid fully homomorphic encryption scheme QFHE := ⟨KeyGen,QOTP,

Enc,Eval,Dec⟩, with sub-exponential advantage security.

• A post-quantum secure indistinguishability obfuscation scheme iO.

• A post-quantum secure extended noisy trapdoor claw-free function (ENTCF) family
(F ,G).

Our main protocol’s construction is given in protocol 10. The protocol involves two
parties: a QPT prover (or receiver, denoted as P), and a PPT verifier (or sender, denoted
as V).

Protocol 6: Semi-Quantum Protocol: BB84 Test Round
Input. The verifier initially receives Pauli keys (α, β) with α, β ∈ {0, 1}n as private
inputs.

1. The verifier selects a uniformly random basis θ ←$ {0, 1}, where 0 corresponds to
the computational and 1 to the Hadamard basis.

2. The verifier samples keys and trapdoors {(ki, ti)}ni=1 by computing (ki, ti) ←
GenKθ

(1λ). The verifier then sends {ki}ni=1 to the prover (but keeps the trapdoors
{ti}ni=1 private).

3. The verifier receives {yi}ni=1 where yi ∈ Y from the prover.

4. The verifier selects a round type ∈ {pre-image round,Hadamard round} uniformly
at random and sends the round type to the prover.

(a) For a pre-image round: the verifier receives {(bi, xi)}ni=1 from the prover, with

B.2. Definitions and Protocols 181

bi ∈ {0, 1}, and xi ∈ X . The verifier sets flagbb84 ← flagPre and aborts if
Chk(ki, ti, bi, xi) = 0 for any i ∈ J1, nK.

(b) For a Hadamard round: the verifier receives {di}ni=1 from the prover with
di ∈ {0, 1}w (for some w depends on the security parameter λ). The verifier
sends q = θ to the prover, and receives answers {vi}ni=1 with vi ∈ {0, 1}. The
verifier performs the following:
• If q = θ = 0, set flagbb84 ← flagHad and abort if b̂(ki, yi) ̸= vi for some
i ∈ J1, nK.
• If q = θ = 1, set flagbb84 ← flagHad and abort if û(ki, yi, di) ̸= vi ⊕ βi

for some i ∈ J1, nK.

Protocol 7: Semi-Quantum Protocol: Coset-state Test Round
Input. The verifier initially receives a subspace A ⊆ Fn2 and Pauli keys (α, β) with
α, β ∈ {0, 1}n as private inputs.

1. The verifier selects a uniformly random basis θ ←$ {0, 1}, where 0 corresponds to
the computational and 1 to the Hadamard basis.

2. The verifier samples keys and trapdoors {(ki, ti)}ni=1 by computing (ki, ti) ←
GenKθ

(1λ). The verifier then sends {ki}ni=1 to the prover (but keeps the trapdoors
{ti}ni=1 private).

3. The verifier receives {yi}ni=1 where yi ∈ Y from the prover.

4. The verifier sends “Hadamard round” as the round type to the prover.

5. The verifier receives {di}ni=1 from the prover with di ∈ {0, 1}w (for some w depends
on the security parameter λ). The verifier sends q = θ to the prover, and receives
answers {vi}ni=1 with vi ∈ {0, 1}.
The verifier performs the following:

• If q = θ = 0, let v⃗ := v1 . . . vn. Set flagcoset ← flagHad and abort if
v⃗ /∈ A+ α.

• If q = θ = 1, let si ← vi ⊕ û(ki, yi, di) and let s := s1 . . . sn. Set flagcoset ←
flagHad and abort if s⃗ /∈ A⊥ + β.

Protocol 8: Semi-Quantum Protocol: Self-Testing
Let M2 the maximum number of test rounds (for M ∈ N).
Input. The verifier initially receives a subspace A ⊆ Fn2 and Pauli keys (α′, β′)
and {(αi, βi)}M

2
i=1 with α′, β′, αi, βi ∈ {0, 1}n as private inputs. Note that (A,α′, β′)

corresponds to one coset-state instance, and {(αi, βi)}M
2

i=1 corresponds to M2 BB84
instances.

1. The verifier privately samples B ←$ J1,M − 1K (this determines the number of
BB84 test rounds that will be performed).

2. The verifier performs BM executions of protocol 6 (with corresponding private
inputs {(αi, βi)}) with the prover. The verifier aborts if protocol 6 aborts for some

182 Appendix B. Semi-Quantum Unclonable Cryptography -
Supplementary Materials

execution.

3. The verifier privately samples R ←$ J1,MK and executes protocol 6 with the
prover R − 1 times (with corresponding private inputs {(αi, βi)}). Then the
verifier executes protocol 7 with the prover (with private inputs (A,α′, β′)) and
aborts if protocol 7 aborts.

Protocol 9: Semi-Quantum Protocol: Self-Testing (with Soundness Amplifi-
cation)

Let N := λ the number of iterations.
Input. The verifier initially receives {(Ai, α′i, β′i)}Ni=1 and {(αi, βi)}NM

2
i=1 as private inputs.

Each tuple in the first set corresponds to a coset-state instance, and each tuple in the
second set corresponds to a BB84 instance.
The verifier and the prover sequentially run protocol 8 N times as follows.

1. For each run, the verifier and the prover interactively run protocol 8 with one
coset state instance (Ai, α′i, β′i) and M2 BB84 instances {(αi, βi)}M

2
i=1, each is picked

uniformly at random from the input sets. (If some instance has been picked before,
it will be excluded).

2. The verifier aborts unless protocol 8 does not abort in all N iterations.

Protocol 10: Semi-Quantum Protocol: Main Protocol
Verifier’s preparation.

1. Coset-state instances. For each i ∈ J1, 2NK, the verifier samples a random
n
2 -dimensional subspace Si ⊆ Fn2 , described by a matrix MSi

∈ {0, 1}n
2×n. Sam-

ples Pauli keys pαi
←$ {0, 1}n2

2 to encrypt Mpαi
Si
← QFHE.QOTP(pαi

,MSi
),

and then (pki, ski) ← QFHE.KeyGen(1λ, 1ℓ(λ)) for some polynomial ℓ(·), cti ←
QFHE.Enc(pki, pαi

).

2. n-qubit BB84 instances. For each i ∈ J1, NM2K, the verifier samples Pauli
keys pαi

←$ {0, 1}n2
2 to encrypt Mpαi

0 ← QFHE.QOTP(pαi
,M0) (here, M0 is

the all-zero vector of length n2

2), and then (pki, ski) ← QFHE.KeyGen(1λ, 1ℓ(λ)),
cti ← QFHE.Enc(pki, pαi

).

3. For each index i ∈ J1, 2N + NM2K, the verifier picks uniformly at random one
instance from either the set of (encrypted) coset states or the set of (encrypted)
n-qubit BB84 states prepared above. For each index i, denote the i-th instance
as (pki,Mpαi , cti) with secrets (ski, Si). (If this instance is from the set of n-qubit
BB84 states, we understand that Si = M0.)

4. The verifier sends {pki,Mpαi , cti}2N+NM2

i=1 to the prover.
Prover’s homomorphic evaluation

5. Let C the quantum circuit that for an input matrix M ∈ {0, 1}n
2×n, outputs a uni-

form superposition of its row span, except that if M = M0, it outputs a uniform su-
perposition of all vectors in the space Fn2 . The prover homomorphically evaluates C
for each i ∈ J1, 2N +NM2K: (|Si,αi,βi

⟩ , cti,αi,βi
)← QFHE.Eval

(
pki, (Mpαi , cti), C

)
,

saves the quantum part |Si,αi,βi
⟩ and sends the classical part cti,αi,βi

to the verifier.

B.3. Rigidity and soundness of protocols 6 to 8 183

Self-testing for the prover.

6. For each i ∈ J1, 2N+NM2K, the verifier decrypts (αi, βi)← QFHE.Dec(ski, cti,αi,βi
).

For all coset-state instances, if αi ∈ Si, the protocol is terminated.

7. The verifier then runs protocol 9 with these NM2 prepared BB84 instances and
N coset-state instances, where each coset-state instance is picked uniformly at
random among 2N prepared instances. (If some instance has been picked before,
it will be excluded). It aborts if protocol 9 aborts.

Coset-state generation.

8. The verifier samples a random n
2 -dimensional coset (Ŝ, α̂, β̂) ⊆ Fn2 independently.a

Let MŜ,MŜ⊥ ∈ {0, 1}
n
2×n bases for Ŝ and Ŝ⊥, respectively.

9. Let T the set of indexes of the remaining N instances of the coset-states which
have not been used in the self-testing protocol above. For each i ∈ T , the verifier
does the following:

(a) Let MS⊥
i
∈ {0, 1}n

2×n a basis for S⊥i (as a matrix). Compute indis-
tinguishability obfuscations P0,i ← iO (iO(MSi

+ αi) ∨ iO(MŜ + α̂)) and
P1,i ← iO

(
iO(MS⊥

i
+ βi) ∨ iO(MŜ⊥ + β̂)

)
, all with appropriate padding.b

(b) Record {(αi, βi, Si)}i∈T .

(c) Send T and {P0,i, P1,i}i∈T to the prover.

The output of the prover is {P0,i, P1,i, |Si,αi,βi
⟩}i∈T where |T | = N .

aThis step is merely an artifact that we will need later for the security proof.
bHere, we understand that for any two programs C,C ′ with binary output, iO(C ∨ C ′)(x) outputs

C(x) ∨ C ′(x).

B.3 Rigidity and soundness of protocols 6 to 8
In this section, we first prove rigidity statements of protocols 6 and 7. Then, we prove the
soundness of the self-testing protocol (protocol 8). Finally, we prove the soundness of the
final protocol (protocol 10).

The rigidity argument we establish in this section for protocol 8 is based on the n-fold
parallel rigidity proof from Gheorghiu, Metger, and Poremba (2022). We will make frequent
use of some technical lemmas from the proof of that paper.

B.3.1 Modeling a General Prover

Devices

We model the actions of a general prover by a “device”. This formalizes all possible actions
that can be taken by the prover to compute his answers to the verifier in protocol 6
and protocol 7. By Naimark’s theorem, up to adding dimensions to the prover’s Hilbert
space, we can assume without loss of generality that the prover only performs projective
measurements (instead of more general POVMs).

184 Appendix B. Semi-Quantum Unclonable Cryptography -
Supplementary Materials

Definition 52 (Devices Gheorghiu, Metger, and Poremba (2022)). A device D :=
(S,Π,M, P) is specified by the following:

1. A set S = {ψ(θ⃗)}θ⃗∈{0,1}n of states ψ(θ⃗) ∈ D(HD ⊗HY), where dim(HY) = |Y|n and
the states are classical on HY :

ψ(θ⃗) =
∑
y⃗∈Yn

ψ
(θ⃗)
y⃗ ⊗ |y⃗⟩⟨y⃗|Y . (B.8)

In the context of protocol 6 and protocol 7, ψ(θ⃗) is the prover’s state after returning
y⃗ for the case where the verifier makes basis choices θ⃗.1 Each ψ(θ⃗) also implicitly
depends on the specific keys chosen by the verifier (not just the basis choice θ⃗); all
the statements we make hold on average over key choices (for a fixed basis choice θ⃗).
Furthermore, since protocol 6 and protocol 7 are actually used as sub-protocols in a
bigger protocol (protocol 10), ψ(θ⃗) also depends on all messages exchanged (before
the executions of these sub-protocols) in protocol 10; for clarity we suppress this
dependence from the notation, as we will see later these dependencies do not affect
the rigidity proofs of these sub-protocols.

2. In the case of protocol 6, a projective measurement Π on HD ⊗HY :

Π =
Π(⃗b,x⃗) =

∑
y⃗

Π(⃗b,x⃗)
y⃗ ⊗ |y⃗⟩⟨y⃗|Y


b⃗∈{0,1}n; x⃗∈Xn

. (B.9)

This is the measurement used by the prover to compute his answer (⃗b, x⃗) in the
pre-image challenge.

3. In the case of protocol 7, Π is the identity operator I on HD ⊗HY . This is because
in protocol 7, there is no pre-image challenge.

4. A projective measurement M on HD ⊗HY :

M =
M (d⃗) =

∑
y⃗

M
(d⃗)
y⃗ ⊗ |y⃗⟩⟨y⃗|Y


d⃗∈{0,1}w×n

. (B.10)

This is the measurement used by the prover to compute his answer d⃗ in the Hadamard
challenge. We use an additional Hilbert spaces HR to record the outcomes of
measuring M and write the post-measurement state after applying M to ψ(θ⃗) as

σ(θ⃗) :=
∑
y⃗,d⃗

M
(d⃗)
y⃗ ψ

(θ⃗)
y⃗ M

(d⃗)
y⃗ ⊗ |y⃗, d⃗⟩⟨y⃗, d⃗|Y R . (B.11)

1In protocol 6, the only two basis choices are θ⃗ = 0⃗ and θ⃗ = 1⃗. However, ψ(θ⃗) is still well-defined
as the state that the prover (who is defined in terms of the quantum circuits he runs on a given input)
would prepare if given keys of basis choice θ⃗, even though this never occurs in protocol 6. This is different
from protocol 7, as it is crucial for the verifier’s procedure in protocol 7 to use only 0⃗ or 1⃗ as the basis
choice. Otherwise the protocol would be “undefined”.

B.3. Rigidity and soundness of protocols 6 to 8 185

5. A set P = {Pq}, where for each q ∈ {0, 1}, Pq is a projective measurement on
HD ⊗HY ⊗HR:

Pq =

P (v⃗)
q =

∑
y⃗,d⃗

P
(v⃗)
q,y⃗,d⃗
⊗ |y⃗, d⃗⟩⟨y⃗, d⃗|Y R


v⃗∈{0,1}n

. (B.12)

In the context of protocol 6 and protocol 7, given question q, the prover will measure
{P (v⃗)

q } and return the outcome v⃗ as his answer.

Definition 53 (Efficient devices). A device is called efficient if the states ψ(θ⃗) can be
prepared efficiently and the measurements Π, M , and Pq can be performed efficiently.

Success Probabilities of a Device

During the self-testing protocol (protocol 8), the verifier applies certain checks to the
answers given by the prover. If the prover fails these checks, the verifier sets a flag to
flagPre or flagHad then aborts. Here, we define the probabilities that the prover passes
these checks and relate these probabilities in both protocols protocol 6 and protocol 7.

Definition 54 (Success probabilities). For any device D := (S,Π,M, P) we define
γP (Dbb84) as the device’s failure probability in a pre-image round, γH(Dbb84) as the
failure probability in a Hadamard round in protocol 6 and γH(Dcoset) as the failure
probability in a Hadamard round in protocol 7:

γP (Dbb84) := Pr [flagbb84 = flagPre | round type = pre-image round] , (B.13)

γH(Dbb84) := Pr [flagbb84 = flagHad | round type = Hadamard round] , (B.14)

γH(Dcoset) := Pr [flagcoset = flagHad] . (B.15)

Next, we give the definition of a perfect prover in protocol 6. Informally, a perfect
prover is accepted by the verifier in a pre-image round with probability negligibly close to
1.

Definition 55 (Perfect device in protocol 6). We call a device D perfect if γP (Dbb84) =
negl(λ).

The following lemma says that for any device in protocol 6 that has a non-negligible
failure probability in the pre-image test, there is another perfect device that is “close”
to the original one in the sense that its measurements are the same as for the original
device and its states only differ by O(γP (D)). By using this lemma, for the rest of the
rigidity proof, it suffices to only consider perfect devices: for any arbitrary device, we
can first make a reduction to the corresponding perfect device at the cost of incurring
an approximation error of O(γP (D)), and then apply our soundness proof to the perfect
device.

Lemma 12 (Gheorghiu, Metger, and Poremba (2022, Lemma 4.9)). Let D = (S,Π,M, P)
be an efficient device in protocol 6 with γP (Dbb84) < 1, where S =

{
ψ(θ⃗)

}
. Then there

exists an efficient perfect device D′ = (S ′,Π,M, P), which uses the same measurements
Π,M, P and whose states S ′ =

{
ψ′(θ⃗)

}
satisfy for any θ⃗ ∈ {0, 1}n:

ψ′(θ⃗) ≈γP (Dbb84) ψ
(θ⃗) . (B.16)

186 Appendix B. Semi-Quantum Unclonable Cryptography -
Supplementary Materials

Proof. The proof of this lemma uses essentially the same technique to that of Metger
and Vidick (2021, Lemma 4.13), which in turn based on Mahadev (2018, Claim 7.2). We
give a sketch of the proof for correctness. A construction of D′ is as follows. D′ first
prepares the states ψ(θ⃗) as D does, then applies the efficient unitary UΠ associated with
the measurement Π:

|0⟩⟨0|R ⊗ ψ
(θ⃗) UΠ7−→ |⃗b, x⃗⟩⟨⃗b, x⃗|R ⊗ Π(⃗b,x⃗)ψ(θ⃗)Π(⃗b,x⃗). (B.17)

Now D′ coherently evaluates the (efficient) Chk-function on the Y -register of Π(⃗b,x⃗)ψ(θ⃗)Π(⃗b,x⃗)

and the new register containing (bi, xi) for all i ∈ J1, nK. If Chk succeeds, D′ applies U †Π to
the state, traces out the ancillary register R, and uses this as ψ′(θ⃗). Otherwise, D′ repeats
the process up to polynomially (in the security parameter) many times, and aborts if the Chk
procedure never succeeds. Since γP (Dbb84) is defined as the maximum failure probability
of the pre-image test, and the Chk procedure fails if the pre-image check fails on any qubit,
the probability of the Chk procedure failing is at most n · γP (Dbb84) = O(γP (Dbb84)) by a
union bound.

If 1−γP (Dbb84) is negligible, the trace distance bound between ψ(θ⃗) and ψ′(θ⃗) is trivially
satisfied. If 1 − γP (Dbb84) is non-negligible, the probability that Chk fails polynomially
many times is negligible. Furthermore, by definition of the ENTCF family, the Chk
procedure requires only the function key and not the trapdoor, which implies that it can
be computed efficiently by the prover D′. It means that D′ is efficient and perfect.

Fix θ⃗. By Definition 3, we need to show
∥∥∥ψ′(θ⃗) − ψ(θ⃗)

∥∥∥
1
≈γP (Dbb84)1/2 0. Since the proba-

bility of the Chk to succeed is at least 1−O(γP (Dbb84)), by the gentle measurement lemma
(Wilde (2011)), the post-measurement state after Chk has succeeded is O(γP (Dbb84)1/2)-
close in trace distance to UΠ(|0⟩⟨0|R ⊗ ψ(θ⃗))U †Π. Because the trace distance is unitarily
invariant, this implies that the state ψ′(θ⃗) is also O(γP (Dbb84)1/2)-close in trace distance to
ψ(θ⃗).

B.3.2 Rigidity Proof of protocol 6

The rigidity proof of protocol 6 follows identically from that of Gheorghiu, Metger, and
Poremba (2022). In this section, we recall definitions and related technical lemmas
from Gheorghiu, Metger, and Poremba (2022) that are needed for our proof later. The
main difference lies in the last verification procedure, in which our verification procedure
also involves the Pauli keys from the QFHE. However, one can easily inspect their proof
and see that this difference does not change most part of the proof. This essentially follows
from the fact that the one-time pads (and generally, the homomorphic enryption) are
independent of all the messages and verifier’s secrets in the execution of protocol 6, it only
is used in the verification of the verifier as its secret input. When the difference appears,
we will re-prove the lemma with respect to our protocol.

Definition 56 (Observables). For a deviceD := (S,Π,M, P) with projective measurements

B.3. Rigidity and soundness of protocols 6 to 8 187

as in Definition 52 and β⃗ ∈ {0, 1}n, we define the following binary observables:

Zi =
∑
v⃗

(−1)viP
(v⃗)
0 , (B.18)

Xi =
∑
v⃗

(−1)viP
(v⃗)
1 , (B.19)

X̃i =
∑
v⃗,y⃗,d⃗

(−1)βi⊕vi⊕û(ki,yi,di)P
(v⃗)
1,y⃗,d⃗ ⊗ |y⃗, d⃗⟩⟨y⃗, d⃗|Y R . (B.20)

We further use the following notation for products of observables: for a⃗ ∈ {0, 1}n, we
define

Z (⃗a) := Za1
1 . . . Zan

n =
∑
v⃗

(−1)a⃗·v⃗P (v⃗)
0 , (B.21)

and likewise for X (⃗a) and X̃ (⃗a). It is easy to see that

X̃ (⃗a)y⃗,d⃗ = (−1)a⃗·(β⃗⊕û(k⃗,y⃗,d⃗))X (⃗a)y⃗,d⃗ . (B.22)

Remark 7. X̃i is not an observable that an efficient prover can implement because it
depends on û(k, y, d), which requires the trapdoor information to be computed efficiently,
and the Pauli key β, which the prover only has an encryption of it. Intuitively, while Xi

describes the prover’s answer, X̃i describes whether that answer is accepted by the verifier.

Definition 57 (Partial post-measurement states). For k ∈ K0 ∪ K1, v ∈ {0, 1} and
β ∈ {0, 1} define the set Vβ,k,v ⊆ Y × {0, 1}w by the following condition:

(y, d) ∈ Vβ,k,v iff
b̂(k, y) = v if k ∈ K0 ,

û(k, y, d) = v ⊕ β if k ∈ K1 .
(B.23)

Then for β⃗, k⃗, θ⃗, v⃗ we define

σ(β⃗,θ⃗,v⃗) =
∑

y1,d1∈Vβ1,k1,v1

· · ·
∑

yn,dn∈Vβn,kn,vn

σ
(θ⃗)
y⃗,d⃗
⊗ |y⃗, d⃗⟩⟨y⃗, d⃗| . (B.24)

Further for a⃗ ∈ {0, 1}n we define

σ(β⃗,θ⃗,v,⃗a) :=
∑

v⃗: v⃗·⃗a=v
σ(β⃗,θ⃗,v⃗) . (B.25)

Remark 8. In the following, once β⃗ is fixed, we can drop β⃗ from these notations and
simply write σ(θ⃗,v⃗) and σ(θ⃗,v,⃗a). The reason is that as we explained above, the involvement
of β⃗ is primarily a technicality needed because of our protocol construction, but does not
affect the modular proofs we present here. Another way to see it is to consider β⃗ as a part
of the trapdoor information t⃗. Then we can write û′(k, y, d) := û(k, y, d)⊕ β and define
(y, d) ∈ Vk,v if û′(k, y, d) = v when k ∈ K1. For any statement involving these states, we
understand that there is some β⃗ known by the verifier and these states are defined with
respect to this β⃗.

Intuitively, when θ⃗ = 0⃗, then for any a⃗ ∈ {0, 1}n, σ(⃗0,v,⃗a) is that part of the state
σ(⃗0) for which the honest device would receive outcome v when measuring the observable
Z (⃗a). The following lemma shows what outcomes a successful device must produce when
measuring the observables from Definition 56 on the partial post-measurement states
from Definition 57.

188 Appendix B. Semi-Quantum Unclonable Cryptography -
Supplementary Materials

Lemma 13 (Gheorghiu, Metger, and Poremba (2022, Corollary 4.18)). Consider an
efficient device D = (S,Π,M, P) and a bit v ∈ {0, 1}.

1. For any θ⃗, a⃗ ∈ {0, 1}n such that θi = 0 if ai = 1, then:

Z (⃗a) ≈
γH(Dbb84),σ(θ⃗,v,⃗a) (−1)vI . (B.26)

2. For any θ⃗, a⃗ ∈ {0, 1}n such that θi = 1 if ai = 1, then:

X (⃗a) ≈
γH(Dbb84),σ(θ⃗,v,⃗a) (−1)vI . (B.27)

Next, we define isometries Ṽ , V which can be shown to map the prover’s observables
to the corresponding Pauli observables.

Definition 58 (Rounding isometries Gheorghiu, Metger, and Poremba (2022)). For a
device D with associated Hilbert space HD and y⃗ ∈ Y×n, d ∈ {0, 1}w×n, we define the
isometry Ṽy,d : HD → HD ⊗HA ⊗HQ by the following action on an arbitrary state |φ⟩D:

Ṽy⃗,d⃗ |φ⟩D := E
a⃗,⃗b∈{0,1}n

((
X̃ (⃗a)y⃗,d⃗Z (⃗b)y⃗,d⃗

)
D
⊗
(
σX (⃗a)σZ (⃗b)

)
A

)
|φ⟩D ⊗

(
|Φ+⟩⊗n

)
AQ

, (B.28)

where |Φ+⟩ = |00⟩+|11⟩√
2 denotes an EPR pair, and

(
|Φ+⟩⊗n

)
AQ

is distributed between A

and Q such that every EPR pair has one qubit in either system. We can combine the
different Vy,d into one isometry

Ṽ :=
∑
y⃗,d⃗

Ṽy⃗,d⃗ ⊗ |y⃗, d⃗⟩⟨y⃗, d⃗| : HD ⊗HY ⊗HR → HD ⊗HY ⊗HR ⊗HA ⊗HQ . (B.29)

We similarly define

Vy⃗,d⃗ |φ⟩D := E
a⃗,⃗b∈{0,1}n

((
X (⃗a)y⃗,d⃗Z (⃗b)y⃗,d⃗

)
D
⊗
(
σX (⃗a)σZ (⃗b)

)
A

)
|φ⟩D ⊗

(
|Φ+⟩⊗n

)
AQ

(B.30)

and

V :=
∑
y⃗,d⃗

Vy⃗,d⃗ ⊗ |y⃗, d⃗⟩⟨y⃗, d⃗| . (B.31)

The following lemma relates Ṽ and V .

Lemma 14. For any keys k⃗ ∈ Kn1 and β⃗ ∈ {0, 1}n:

Vy⃗,d⃗ = σZ
(
û(k⃗, y⃗, d⃗)⊕ β⃗

)
A
⊗ σZ

(
û(k⃗, y⃗, d⃗)⊕ β⃗

)
Q
Ṽy⃗,d⃗ . (B.32)

Proof. For any state |φ⟩D, we have:

σZ
(
û(k⃗, y⃗, d⃗)⊕ β⃗

)
A
⊗ σZ

(
û(k⃗, y⃗, d⃗)⊕ β⃗

)
Q
Ṽy⃗,d⃗ |φ⟩D

= E
a,b∈{0,1}n

(
X̃ (⃗a)y⃗,d⃗Z (⃗b)y⃗,d⃗

)
D
|φ⟩D⊗[(

σZ
(
û(k⃗, y⃗, d⃗)⊕ β⃗

)
σX (⃗a)σZ (⃗b)

)
A
⊗ σZ

(
û(k⃗, y⃗, d⃗)⊕ β⃗

)
Q

(
|Φ+⟩⊗n

)
AQ

]

B.3. Rigidity and soundness of protocols 6 to 8 189

Repeatedly using that (σZ)A |Φ+⟩AQ = (σZ)Q |Φ+⟩AQ:

= E
a,b∈{0,1}n

(
X̃ (⃗a)y⃗,d⃗Z (⃗b)y⃗,d⃗

)
D
|φ⟩D⊗[(

σZ
(
û(k⃗, y⃗, d⃗)⊕ β⃗

)
σX (⃗a)σZ (⃗b)σZ

(
û(k⃗, y⃗, d⃗)⊕ β⃗

))
A

(
|Φ+⟩⊗n

)
AQ

]

Since σZ
(
û(k⃗, y⃗, d⃗)⊕ β⃗

)
σX (⃗a)σZ (⃗b)σZ

(
û(k⃗, y⃗, d⃗)⊕ β⃗

)
= (−1)a⃗·(û(k⃗,y⃗,d⃗)⊕β⃗)σX (⃗a)σZ (⃗b):

= E
a,b∈{0,1}n

(
(−1)a⃗·(û(k⃗,y⃗,d⃗)⊕β⃗)X̃ (⃗a)y⃗,d⃗Z (⃗b)y⃗,d⃗

)
D
|φ⟩D ⊗

[(
σX (⃗a)σZ (⃗b)

)
A

(
|Φ+⟩⊗n

)
AQ

]

Recalling from Definition 56 that (−1)a⃗·(û(k⃗,y⃗,d⃗)⊕β⃗)X̃ (⃗a)y⃗,d⃗ = X (⃗a)y⃗,d⃗ :

= E
a,b∈{0,1}n

(
X (⃗a)y⃗,d⃗Z (⃗b)y⃗,d⃗

)
D
|φ⟩D ⊗

[(
σX (⃗a)σZ (⃗b)

)
A

(
|Φ+⟩⊗n

)
AQ

]
= V |φ⟩D .

We then show that the isometry Ṽ maps the observables X̃ (⃗a)Z (⃗b) to the corresponding
Pauli observables.

Lemma 15 (Gheorghiu, Metger, and Poremba (2022, Lemma 4.28)). For an efficient
perfect device D = (S,Π,M, P) and any a⃗, b⃗ ∈ {0, 1}n we have

Tr
[
Ṽ †
(
σX (⃗a)σZ (⃗b)

)†
Q
Ṽ X̃ (⃗a)DY RZ (⃗b)DY Rσ(⃗1)

DY R

]
≈n1/2γH(Dbb84)1/8 1 . (B.33)

By combining Lemma 14 and Lemma 15 we can show that the isometry V maps the
observables X (⃗a)Z (⃗b) to the corresponding Pauli observables.

Lemma 16 (Gheorghiu, Metger, and Poremba (2022, Proposition 4.29)). For an efficient
perfect device D = (S,Π,M, P) and any a⃗, b⃗ ∈ {0, 1}n we have

V X (⃗a)Z (⃗b)V † ≈n1/2γH(Dbb84)1/8,V σ(⃗1)V †

(
σX (⃗a)σZ (⃗b)

)
Q
⊗ IY RDA . (B.34)

B.3.3 Rigidity Proof of protocol 7

Having established a characterization of the prover’s observables X (⃗a)Z (⃗b) in protocol 6,
we now use this to characterize the prover’s behavior in protocol 7.

Step 1: Modeling. First, we introduce the corresponding notion of post-measurement
states for an efficient device of protocol 7. Note that the two protocols are identical from
the prover’s point of view when the round type is the Hadamard round, and the marginal
observables from Definition 56 are defined for Hadamard round. Thus we can use the
same notation of marginal observables from Definition 56 (in particular, we only need the
efficient observables X (⃗a) and Z (⃗b)) for an efficient device in protocol 7.

Definition 59. For k⃗ ∈ (K0 ∪ K1)n, v⃗ ∈ {0, 1}n and A ⊆ Fn2 , α⃗, β⃗ ∈ {0, 1}n define the set
VA,α⃗,β⃗,⃗k,v⃗ ⊆ Yn × {0, 1}w×n by the following condition:

(y⃗, d⃗) ∈ VA,α⃗,β⃗,⃗k,v⃗ iff
b̂(k⃗, y⃗) = v⃗ ∈ A+ α⃗ if k⃗ ∈ Kn0 ,
û(k⃗, y⃗, d⃗)⊕ v⃗ ∈ A⊥ + β⃗ if k⃗ ∈ Kn1 .

(B.35)

190 Appendix B. Semi-Quantum Unclonable Cryptography -
Supplementary Materials

Then for α⃗, β⃗, k⃗, θ⃗ ∈ {⃗0, 1⃗}, v⃗ we define

σ(A,α⃗,β⃗,θ⃗,v⃗) =
∑

y⃗,d⃗∈V
A,α⃗,β⃗,k⃗,v⃗

σ
(θ⃗)
y⃗,d⃗
⊗ |y⃗, d⃗⟩⟨y⃗, d⃗| . (B.36)

By the same argument as in Remark 8, we can write σ(θ⃗,v⃗) for simplicity.

We note that different from Definition 57, we only consider two basis choices θ⃗ = 0⃗ or
θ⃗ = 1⃗, whereas the post-measurement states in Definition 57 can be defined with respect
to any basis choice. Similar to Lemma 13, we analyze what outcomes a successful device
must produce when measuring the observables from Definition 56 on the post-measurement
states from Definition 59.

Lemma 17. For any efficient device D = (S,Π,M, P), a coset state description (A,α, β):∑
v⃗∈S0

Tr
[
Z

(vi)
i σ(⃗0,v⃗)

]
≈γH(Dcoset) 1 , (B.37)

∑
v⃗∈S1

Tr
[
X

(vi)
i σ(⃗1,v⃗)

]
≈γH(Dcoset) 1 , (B.38)

where S0 := A+ α and S1 := A⊥ + β − û(k⃗, y⃗, d⃗).

Proof. We first prove Equation (B.37). Since the case q = θ = 0 occurs with probability
1/2 in protocol 7, the device’s failure probability in this case can be at most 2γH(Dcoset).
Furthermore, since the device only succeeds if vi = b̂(ki, yi) and v⃗ ∈ A+α for all i ∈ J1, nK
in the protocol, it means that the device succeeds with probability at least 1− 2γH(D).
Now comparing the definition of σ(⃗0,v⃗) with the verifier’s checks in the protocol, this means
that for all i ∈ J1, nK: ∑

v∈S0

Tr
[
Z

(vi)
i σ(⃗0,v⃗)

]
≥ 1− 2γH(D) .

For the inequality in the other direction, we note that since Z
(vi)
i is a projector, we

immediately have ∑
v⃗∈S0

Tr
[
Z

(vi)
i σ(⃗0,v⃗)

]
≤
∑
v⃗∈S0

Tr
[
σ(⃗0,v⃗)

]
= Tr

[
σ(⃗0)

]
= 1,

finishing the proof of Equation (B.37).
The proof of Equation (B.38) is completely analogous, combining with the fact that if

v⃗ + û(k⃗, y⃗, d⃗) ∈ A⊥ + β iff v⃗ ∈ A⊥ + β − û(k⃗, y⃗, d⃗).

Step 2: Relating protocol 6 and protocol 7. We relate the prover’s operators and
states in protocol 6 and protocol 7 by the following lemmas.

Lemma 18. For any efficient devices D,D′ with the notation given in Definition 52.
Assume that D is a device of protocol 6 with corresponding states (ψ(θ⃗), σ(θ⃗)) and D′ is a
device of protocol 7 with corresponding states (ψ′(θ⃗′), σ′(θ⃗

′)). Then

ψ(θ⃗) c≈0 ψ
′(θ⃗′) , (B.39)

and
σ(θ⃗) c≈0 σ

(θ⃗′) . (B.40)

B.3. Rigidity and soundness of protocols 6 to 8 191

Proof. At the beginning of each protocol’s execution: in protocol 6, the device’s state is
(encrypted) BB84 states, while in protocol 7, the device’s state is (encrypted) coset states.
Furthermore, note that executing protocol 6 or protocol 7 does not require the secret key
of the QFHE encryption scheme. Equation (B.39) then follows directly from semantic
security of the QFHE encryption scheme.

In protocol 7, the verifier never sends a “pre-image round” challenge. In protocol 6,
the round type is chosen uniformly at random, so with probability 1

2 , the round type is
“Hadamard round”. In this case, the execution of two protocols are identical from the
prover’s point of view. Since the prover is efficient, Equation (B.40) also follows.

We then obtain the following relation between the success probabilities of devices
in protocol 6 and protocol 7.

Corollary 8. For any efficient device D := (S,Π,M, P):

γH(Dbb84)
c≈0 2γH(Dcoset). (B.41)

Remark 9. Due to the relation in Equation (B.41) and the definition of the “≈”-notation
(Definition 3), from now on, we drop the subscript and simply write γH(D) when it is
clear from the context.

Combining Corollary 8 and Lemma 18, using the same isometry V defined in Defini-
tion 58, we can “lift” the approximate-equality relations described in Lemma 16 for an
efficient device in protocol 6 to an efficient device in protocol 7.

Lemma 19. For an efficient perfect device D = (S,Π,M, P) in protocol 7 and any
a⃗, b⃗ ∈ {0, 1}n we have

V X (⃗a)Z (⃗b)V † ≈n1/8γH(D)1/32,V σ(⃗1)V †

(
σX (⃗a)σZ (⃗b)

)
Q
⊗ IY RDA . (B.42)

Proof. The lemma follows directly from the lifting lemma (Item 6 of Lemma 9) and
the fact that the isometry V and the operators X,Z are efficient. Using the notation
from Lemma 9, we have δ = 0, ε = n1/2γH(D)1/8, the isometry is V , the observable A is
X (⃗a)Z (⃗b), the observable B is σX (⃗a)σz (⃗b)⊗ I. The two states are V σ′(⃗1)V † of a device
in protocol 6 and V σ(⃗1)V † of a device in protocol 7.

Step 3: Rigidity. We first prove the following technical lemma.

Lemma 20. For an efficient device D = (S,Π,M, P), a coset state description (A,α, β):
∑
v⃗∈S0

|v⃗⟩⟨v⃗| ⊗ (σ(vi)
Z,i)Q ≈ε,∑

v⃗′∈S0
|v⃗′⟩⟨v⃗′|⊗V σ0⃗,v⃗′V † I , (B.43)

∑
v⃗∈S1

|v⃗⟩⟨v⃗| ⊗ (σ(vi)
X,i)Q ≈ε,∑

v⃗′∈S1
|v⃗′⟩⟨v⃗′|⊗V σ1⃗,v⃗′V † I , (B.44)

where S0 = A+α, S1 = A⊥+β− û(k⃗, y⃗, d⃗) and the approximation factor ε will be clarified
later in the proof.

192 Appendix B. Semi-Quantum Unclonable Cryptography -
Supplementary Materials

Proof. We first prove the first statement. It is easy to check that ∑v⃗∈V |v⃗⟩⟨v⃗| ⊗
(
σ

(vi)
Z,i

)
Q

is
a projector, so we can expand the definition of the state-dependent distance and compute:

Tr


∑
v⃗∈S0

|v⃗⟩⟨v⃗| ⊗
(
σ

(vi)
Z,i

)
Q
− I

†∑
v⃗∈S0

|v⃗⟩⟨v⃗| ⊗
(
σ

(vi)
Z,i

)
Q
− I

 ∑
v⃗′∈S0

|v⃗′⟩⟨v⃗′| ⊗ V σ(⃗0,v⃗′)V †


= Tr

I − ∑
v⃗∈S0

|v⃗⟩⟨v⃗| ⊗
(
σ

(vi)
Z,i

)
Q

 ∑
v⃗′∈S0

|v⃗′⟩⟨v⃗′| ⊗ V σ(⃗0,v⃗′)V †


= 1−

∑
v⃗∈S0

Tr
(|v⃗⟩⟨v⃗| ⊗ (σ(vi)

Z,i

)
Q

) ∑
v⃗′∈S0

|v⃗′⟩⟨v⃗′| ⊗ V σ(⃗0,v⃗′)V †


= 1−

∑
v⃗∈S0

Tr
[(
σ

(vi)
Z,i

)
Q
V σ(⃗0,v⃗)V †

]
,

To show the first part of the lemma, we need to show that∑
v⃗∈S0

Tr
[(
σ

(vi)
Z,i

)
Q
V σ(⃗0,v⃗)V †

]
≈ε 1 . (B.45)

For this, recall from Lemma 19 that we have

V ZiV
† ≈n1/8γH(D)1/32,V σ(⃗1)V † (σZ,i)Q ⊗ IY RDA . (B.46)

For shorthand, write γ := n1/8γH(D)1/32. Since V and Zi are efficient, by the lifting lemma
(Lemma 9) and the fact that σ(⃗0) c≈0 σ

(⃗1), this implies that:

V ZiV
† ≈γ1/4,V σ(⃗0)V † (σZ,i)Q ⊗ IY RDA . (B.47)

Using Lemma 10 and Lemma 11, we get:∑
v⃗∈S0

V Z
(vi)
i V † ≈γ1/4,

∑
v⃗∈S0

V σ(⃗0,v⃗)V †

∑
v⃗∈S0

(
σ

(vi)
Z,i

)
Q
⊗ IY RDA . (B.48)

Using the replacement lemma (Lemma 7), we obtain∑
v⃗∈S0

Tr
[(
σ

(vi)
Z,i

)
Q
V σ(⃗0,vi ,⃗1i)V †

]
≈γ1/8

∑
v⃗∈S0

Tr
[
V Z

(vi)
i V †V σ(⃗0,v⃗)V †

]
(B.49)

=
∑
v⃗∈S0

Tr
[
Z

(vi)
i σ(⃗0,v⃗)

]
(B.50)

≈γH(D) 1 , (B.51)

where the last line follows from Equation (B.37). Set ε := γ1/8, this finishes the proof of
the first statement.

For the second statement, we can perform the same calculation, but use Equation (B.38).

Lemma 21. For an efficient perfect device D = (S,Π,M, P), a coset state description
(A,α, β) and θ⃗ ∈ {⃗0, 1⃗}, there exists a set of subnormalized states {ρ(θ⃗,v⃗)

i }v⃗∈Si
where Si for

i ∈ {0, 1} are defined as in Lemma 20 such that∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗ V σ(θ⃗,v⃗)V † ≈2nε
∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗
(
(H⊗n)i|v⃗⟩⟨v⃗|(H⊗n)i

)
Q
⊗ ρ(θ⃗,v⃗)

i , (B.52)

where i = 0 if θ⃗ = 0⃗ and i = 1 if θ⃗ = 1⃗.

B.3. Rigidity and soundness of protocols 6 to 8 193

Proof. We define the shorthand

M(θ) =
Z if θ = 0 ,
X if θ = 1 .

Applying Lemma 20 and Lemma 8 to get∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗ V σ(θ⃗,v⃗)V †

≈ε

∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗
(
σ

(v1)
M(θ1),1

)
Q

 ∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗ V σ(θ⃗,v⃗)V †

∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗
(
σ

(v1)
M(θ1),1

)
Q


We repeat this for the remaining indices j = 2, . . . , n. Since there are in total n steps, the
total approximation error will be nε. We then have∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗ V σ(θ⃗,v⃗)V †

≈nε

∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗
(
σ

(v1)
M(θ1),1

)
Q

 . . .
∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗
(
σ

(vn)
M(θn),n

)
Q

 ∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗ V σ(θ⃗,v⃗)V †

∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗
(
σ

(v1)
M(θ1),1

)
Q

 . . .
∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗
(
σ

(vn)
M(θn),n

)
Q


=
∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗

∏
j

σ
(vj)
M(θj),j


Q

V σ(θ⃗,v⃗)V †

∏
j

σ
(vj)
M(θj),j


Q

.

Now noting that ∏j σ
(vj)
M(θj),j = (H⊗n)i|v⃗⟩⟨v⃗|(H⊗n)i, we obtain

=
∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗
(
(H⊗n)i|v⃗⟩⟨v⃗|(H⊗n)i

)
Q
⊗
(
⟨v| (H⊗n)i

)
Q
V σ(θ⃗,v⃗)V †

(
(H⊗n)i |v⟩

)
Q

=
∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗
(
(H⊗n)i|v⃗⟩⟨v⃗|(H⊗n)i

)
Q

⊗ TrQ
[(

(H⊗n)i|v⃗⟩⟨v⃗|(H⊗n)i
)
Q
V σ(θ⃗,v⃗)V †

(
(H⊗n)i|v⃗⟩⟨v⃗|(H⊗n)i

)
Q

]

Analogously to how we added the factors ∏j σ
(vj)
M(θj),j in a previous step, we can now replace

the factors ((H⊗n)i|v⃗⟩⟨v⃗|(H⊗n)i)Q inside the partial trace by identity, resulting in

≈2nε
∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗
(
(H⊗n)i|v⃗⟩⟨v⃗|(H⊗n)i

)
Q
⊗ TrQ

[
V σ(θ⃗,v⃗)V †

]
.

We then obtain the desired statement by defining

ρ
(θ⃗,v⃗)
i := TrQ

[
V σ(θ⃗,v⃗)V †

]
, (B.53)

with i = 0 if θ⃗ = 0⃗ and i = 1 if θ⃗ = 1⃗.

What Lemma 21 says is that up to an isometry, with inverse polynomial error, the
device’s state must be (information-theoretically) close to a mixed state of vectors in

194 Appendix B. Semi-Quantum Unclonable Cryptography -
Supplementary Materials

Si, tensored with an auxiliary state ρ
(θ⃗,v⃗)
i . We note that it is not hard to show that

ρ
(⃗0,v⃗)
0

c≈0 ρ
(⃗1,v⃗)
1 . (Though it is not necessary for our soundness proof.)

Furthermore, from the statement of Lemma 21, for a fixed efficient device D, if we
run protocol 7 “coherently” in superposition, then

(i) when θ⃗ = 0⃗, the device’s state must be in superposition of all vectors in S0, that is
|A+ α⟩,

(ii) when θ⃗ = 0⃗, the device’s state must be in superposition of all vectors in S1. By
applying a correction (XOR-ing the register Q with û(k⃗, y⃗, d⃗)), the state would be
|A⊥ + β⟩.

Thus, with the verifier in protocol 7, we obtain efficient projective measurements to char-
acterize the prover’s initial state. Formally, let O0 be the following process: run protocol 7
in superposition (without measuring any intermediate messages such as y, d, v) with the
basis choice θ⃗ = 1⃗ and check if the register Q at the end of the protocol is |A+ α⟩. O1 is
defined analogously for θ⃗ = 1⃗, and it applies a correction by XORing the register Q with
û(k⃗, y⃗, d⃗) and check if the register Q at the end is |A⊥ + β⟩. We obtain the main technical
lemma.

Lemma 22. For any efficient device D, the initial state of the device ψ must be close to
(up to some inverse polynomial error) |Aα,β⟩ ⊗ ρ:

ψ ≈4nε |Aα,β⟩ ⊗ ρ. (B.54)

Proof. Let U0 and U1 be the efficient unitaries corresponding to operators O0 and O1
defined above. Fix a device D. We first apply U0ψ and record the output to an ancilla
register. If the output is 1, apply the inverse U †0 to obtain ψ′. Finally apply U1ψ

′. If
the output is 1, by the definition of Ui (and Oi), the lemma follows. Note that for each
application of Ui, the approximation error is 2nε which comes from Lemma 21.

B.3.4 Rigidity Proof of protocol 8
We are now ready to prove the rigidity of protocol 8, namely that any efficient quantum
prover that does not cause the protocol to abort must have the initial state close to a
hidden coset state.

Lemma 23. For any λ ∈ N, there exist choices M = poly(λ) and δ = 1/poly(λ) such
that if the verifier executes protocol 8 with an efficient quantum prover whose success
probability is lower-bounded by an inverse polynomial, the following holds. Let (A,α, β)
the private input of the verifier for the coset instance. Denoting the probability that the
protocol does not abort as Pr [⊤], and let ψ the initial state of the prover. Then, with
probability Pr [⊤], we have

ψ
c≈ε |Aα,β⟩ ⊗ ρ, (B.55)

for some auxiliary state ρ, and the approximation error ε is inverse polynomial on the
security parameter λ.

Proof. Essentially, we can see protocol 8 as a cut-and-choose protocol in which the number
of evaluation instances is 1 and the number of check instances is M2 − 1. We then can
reduce this lemma to Lemma 22 using the same argument as in Gheorghiu, Metger, and
Poremba (2022, Theorem 4.33). We omit the details.

B.3. Rigidity and soundness of protocols 6 to 8 195

Remark 10. We make few comments on the inverse polynomial soundness.2 First of all,
what the soundness lemma (Lemma 23) says is effectively the same as a typical self-testing
statement, which is that: if the prover succeeds with probability 1 − ε in the protocol,
the state it used in the protocol must be, up to an isometry, poly(ε)-close to ideal (in our
setting, the closeness is measured by computational distinguishability rather than trace
distance, as in typical self-testing settings). Now, in practice, we would have to estimate ε
by doing many runs of the protocol. In particular, we would need about 1/ε2 repetitions
to have high (that is, 1− negl(λ)) confidence that the prover’s success probability is 1− ε.
This implies that if we want ε to be negligible, we would have to do superpolynomial-many
repetitions of the protocol and since this is not efficient, we are limited to ε = 1/poly(λ).
It is from doing this 1/ε2 repetitions that we go from the original self-testing statement
(Lemma 22) to the statement that characterizes the prover’s state in the actual protocol.

B.3.5 Self-Testing Protocol Soundness
We state and prove in this section the following proposition.

Proposition 1. For any λ ∈ N, there exist choices M = poly(λ) and δ = 1/poly(λ) such
that if the verifier executes protocol 10 with an efficient quantum prover whose success
probability is lower-bounded by an inverse polynomial, the following holds. We denote by
ϕTSV P the verifier and prover’s joint final state at the end of protocol 10, where T is the
set of coset states obtained by the verifier, S is set to |⊥⟩⟨⊥| by the verifier if the protocol
aborts and |⊤⟩⟨⊤| otherwise, V is the register in which the verifier records the set T , and
P is the prover’s registers. Then, denoting the probability of success as Pr[⊤], and writing

ϕTSV P = Pr[⊤]|⊤⟩⟨⊤|S ⊗ ϕ
T
V P |⊤ + (1− Pr[⊤])|⊥⟩⟨⊥| ⊗ ϕTV P |⊥.

Then there exists a coset instance (A,α, β) in T such that the state ϕTV P |⊤ conditioned on
acceptance satisfies:

ϕTV P |⊤
c≈1/poly(λ) |T ⟩⟨T |V ⊗ |Aα,β⟩⟨Aα,β| ⊗ ρ, (B.56)

for some auxiliary state ρ.

Proof. Since in the final protocol (protocol 10), we run N instances over 2N possible
instances of the self-testing protocol (protocol 8) (in the cut-and-choose fashion), we can
invoke techniques developed in Bouman and Fehr (2010) to relate quantum sampling to
classical sampling and conclude Proposition 1.

In particular, consider the following interaction between a quantum prover P and a
challenger V.

1. P and V jointly execute protocol 10. Let T be the set of N indices chosen uniformly
at random by V in N runs of the self-testing protocol.

2. Let Xi be the outcome of each of N runs of the self-testing protocol. V verifies that
Xi = accept for all i ∈ T , and aborts otherwise.

This is a natural quantum analogue of the following classical sampling experiment
(Bouman and Fehr (2010, Example 1)) on a length-2N bitstring X to test if X is close to
the all-zero string:

2We thank Alexandru Gheorghiu for providing us this insightful comments.

196 Appendix B. Semi-Quantum Unclonable Cryptography -
Supplementary Materials

1. randomly select a size-N subset T ⊂ J1, 2NK,

2. compute ω(X|T), and accept if the estimate vanishes and else reject.

Noting that this sample-and-estimate strategy is exactly the Ψuniform strategy described at
the end of Appendix B.1.2, we have by Corollary 7 that the quantum error probability
of this strategy is bounded by 2 exp(−nδ2

64), for δ = 1/2. By the definition of quantum
error probability (Definition 48), this means that, with overwhelming probability over T ,
the state of the prover P in the remaining set T also satisfies Equation (B.54). Indeed,
by changing of basis, this reduces to the question of testing if the state of the prover
before running the self-testing protocol is close to the all-zero state. Then the quantum
sample-and-estimate technique tells us that the state of the prover must be supported on
vectors with relative Hamming distance < 1/2, and it means there must be at least 1 bit in
string which is 0. If this is the case, it corresponds (up to some inverse polynomial error) to
the coset state |Aα,β⟩ in Equation (B.54). This completes the proof of the proposition.

B.4 Proof of Semi-Quantum Monogamy-Of-Entanglement
Property of Protocol 5

In this section, we prove that our remote coset states preparation preserves the monogamy-
of-entanglement property. Formally, we prove soundness of protocol 10.

B.4.1 Monogamy-of-Entanglement Soundness of protocol 10
We now formally define the notion of soundness for our protocol, which is described as a
coset semi-quantum monogamy game.

Theorem 32. protocol 10 is computationally sound, according to Definition 50.

Proof. Let P = {Pλ, ρλ}λ∈N a quantum polynomial time adversary that succeeds in
the game SMCosetMonogamy with some non-negligible probability ε = {ελ}λ∈N. Let
({Si, αi, βi}i∈T , ψ) ← ⟨Pλ(ρλ),V(1λ)⟩. This means that P = (P,B, C) is able to output
a pair (s(i)

1 , s
(i)
2) ∈ (Si + αi) × (S⊥i + βi) for all i ∈ T in the monogamy game defined

in Definition 50.
Let δ′ ∈ (0, 1] the sub-exponential security level of the QFHE (that is, any QPT

adversary cannot break the semantic security of the QFHE with advantage bigger than
2λδ′

), and denote δ := δ′

2 .
We next describe a sequence of hybrid experiments.3

Game G0: This is the original experiment.
We define G0 as the original attack, where P interacts with the verifier in proto-

col 10 and wins the monogamy game SMCosetMonogamy. We say G0 is successful if
SMCosetMonogamy(P, λ) = 1. The experiment G0 is thus successful with probability ε.

Game G1: Changing the success definition of the experiment.
Pick a random index i ∈ T , for shorthand, denote this coset instance as (S, α, β), and

the adversary’s corresponding output in the monogamy game is (s1, s2). In the current
3Some hybrids follow from the proof strategy given in Shmueli (2022a).

B.4. Proof of Semi-Quantum Monogamy-Of-Entanglement Property of Protocol 5
197

hybrid, the experiment is defined to be successful if s1 ∈ S + α and s2 ∈ S⊥ + β. In
particular, in the current hybrid, we only consider the monogamy game for a random
instance among |T | coset instances. (The other instances are not considered). Apparently,
G1 is successful with probability at least ε. From now on, we only consider this coset
instance in later hybrids, and all the changes are only applied to this instance.

Game G2: Injecting quantum communication into the interaction between the prover and
the verifier.

This hybrid is identical to G1 except that now we consider the verifier as a QPT
algorithm instead of a PPT algorithm, and we make an additional round of interaction
using quantum communication in the protocol. (Think about the verifier now as a QPT
challenger of the experiment.) In particular, right after the last step of protocol 10 (step 9c),
we ask the prover to send the coset state |Sα,β⟩ to the verifier. Denote this state as |$⟩.
The verifier then does the following:

• Verify the received coset state:
(a) Checks that the output qubit of the computation iO(S + α)(|$⟩)4 is 1.
(b) Execute Hadamard transform H⊗λ on |$⟩ to obtain |$′⟩ and then check the output

qubit of the computation iO(S⊥ + β)(|$′⟩) is 1.

• If any of these checks returns 0, abort and declare the game as a failure.

• Execute H⊗λ again on |$′⟩ to obtain |$′′⟩ and send |$′′⟩ back to the prover.

From Proposition 1, it follows that with probability at least 1/|T |, the adversary’s
output state ϕ is inverse polynomially ϵ-close to |Sα,β⟩ ⊗ ρ for some auxiliary state ρ. It
means that when it is asked, the adversary can always send a state |$⟩ that is inverse
polynomially ϵ-close to |Sα,β⟩ to the challenger.

Note that the quantum verification described above executes only on the register
containing |$⟩ and thus commutes with any other quantum operation on a register entangled
with it at the point where P finishes executing the real protocol protocol 10. Thus after
finishing the above additional interaction, the adversary’s state is unchanged, if the
verification passed.

The probability that the adversary does not fail in the experiment is 1 − ϵ. It is
then clear that, for any adversary that wins the G1 with probability ε, it wins G2 with
probability at least ε′ := ε(1− ϵ)/|T |. Thus, the success probability of G2 is ε′ for some
non-negligible ε′.

Game G3: Removing subspace information from obfuscated circuits.
This hybrid is identical to G2, with the only difference is that when the verifier returns

the obfuscations P0, P1 in the last step of protocol 10 (Step 9c), the obfuscations are
changed: We sample two random (λ− λδ)-dimensional subspaces T0, T1 ⊆ Fλ2 subjected to
T⊥1 ⊆ S ⊆ T0. The verifier uses iO(T0 + α) instead of iO(S + α), and iO(T1 + β) instead of
iO(S⊥ + β).

It is easy to see that any QPT distinguisher between G2 and G3 can be transformed
into a QPT distinguisher between obfuscations of the original functions S + α, S⊥ + β and

4We are running a classical function on a quantum input, which can be interpreted as running a
classical function in superposition.

198 Appendix B. Semi-Quantum Unclonable Cryptography -
Supplementary Materials

obfuscations of T0 + α, T1 + β. By the subspace hiding property of indistinguishability
obfuscators, the success probabilities of G2 and G3 are thus negligibly close. Thus the
successful probability of G3 is at least ε′ − negl(λ).

Game G4: Computing the obfuscations with less information on α, β.

This hybrid is identical to G3, with a modification in the way we check membership in
each of the cosets: Let B0 a basis for T0, and B1 a basis for T⊥1 , and let yα, yβ ∈ {0, 1}λ−λ

δ

defined as yα := B0 · α and yβ := B1 · β. iO(T0 + α) is changed to be an obfuscation of a
circuit that for an input u ∈ {0, 1}λ checks whether B0 · u = yα. iO(T1 + β) is changed to
be an obfuscation of a circuit that for an input u ∈ {0, 1}λ checks whether B1 · u = yβ.

One can verify that the functionality of the obfuscated circuits iO(T0 + α), iO(T1 + β)
did not change, and thus by the security of the indistinguishability obfuscation schemes,
the distributions are indistinguishable and the success probability of G4 is ε′ − negl(λ).

Game G5: Reordering the sampling process of the subspaces S, T0, T1.

This hybrid is identical to G4, except that we change the order of the subspaces sampling
process. In the previous hybrid, we sample a random λ

2 -dimensional subspace S ⊆ Fλ2
then two random (λ− λδ)-dimensional subspaces T0, T1 subjected to T⊥1 ⊆ S ⊆ T0. In the
current hybrid, we first sample two random (λ− λδ)-dimensional subspaces T0, T1 ⊆ Fn2
subjected to T⊥1 ⊆ T0, then sample a random λ

2 -dimensional subspace S ⊆ Fn2 subjected
to T⊥1 ⊆ S ⊆ T0.

Since the distribution of (S, T0, T1) in both hybrids are identical, the success probability
of G5 is ε′ − negl(λ).

Game G6: Fixing the subspace T0, T1.

In the subspace sampling process described in the previous hybrid, T0 and T1 are
sampled before everything else. Thus we can perform an averaging argument on the
sampling of T0, T1 to take the samples that maximize the success probability of the
previous hybrid. Fix these samples of T0, T1 and define G6 with respect to these samples.
It is clear that the success probability of G6 is ε′ − negl(λ).

Game G7: Removing the QFHE secret key from the reduction.

This hybrid is identical to G6 with one change: In step 6, when the verifier decrypts
the QFHE classical part to get the Pauli keys α, β, the current hybrid does not decrypt
to get α, β and instead it samples uniformly random α′, β′ ∈ {0, 1}λ and computes
y′α := B0 · α′, y′β := B1 · β′. The verifier then use these strings as yα, yβ in the construction
of the obfuscations iO(T0 + α), iO(T1 + β), respectively.

We note that this change is only done for the specific coset instance under the consider-
ation, for the other instances, the verifier still decrypts normally using the corresponding
QFHE secret key.

Since α′, β′ are chosen uniformly at random, for fixed bases B0, B1, y′α, y′β are also
uniformly random. Observe that conditioned on the probabilistic event y′α = yα and
y′β = yβ (for which to happen, the probability is exactly 2−2λδ), the current and previous
hybrids distribute identically. It follows that the success probability in G7 is at least
2−2λδ · (ε′ − negl(λ)) > 2−3λδ .

B.4. Proof of Semi-Quantum Monogamy-Of-Entanglement Property of Protocol 5
199

Game G8: Clearing all given knowledge on S and reducing to the original monogamy-of-
entanglement game.

This hybrid is identical to G7, except that we make two additional changes as follows.

− In the additional quantum communication round that we added after the end of proto-
col 10 (see hybrid G2), instead of sending back the original state |$⟩, the verifier send
|Ŝα̂,β̂⟩. Recall that the coset (Ŝ, α̂, β̂) is the one the verifier sampled independently
in step 8.

− In the step 2 in the monogamy game (Definition 50), when the challenger (i.e., the
verifier) sends the description of the subspace S to both adversaries B, C, it sends Ŝ
instead.

− Consequently, the winning condition is changed to be that B outputs a vector in
Ŝ + α̂ and C outputs a vector in Ŝ⊥ + β̂.

We make few observations on the distribution in the current hybrid. First, in order to
execute G8, there is no need to know the secret key (corresponding to the coset instance
under the consideration) of the QFHE scheme. However, one needs to care when invoking
the semantic security of the QFHE, because even there is no need for the secret key, the
adversary is still given a “predicate” check on the ciphertext, that is the obfuscation.
Thus, to use the security of the QFHE, it is necessary to use two plaintexts such that
the obfuscation evaluation on the ciphertext of these two plaintexts are identical. Our
obfuscations (P0,i, P1,i) were generated so that this condition is satisfied.

Secondly, the obfuscation distribution does not change from the description above, and
we can see that in the previous hybrid, the adversary obtains a quantum one-time pad
encryption of |S⟩, while in the current hybrid, the adversary obtains a quantum one-time
pad of |Ŝ⟩. More precisely, the adversary in the current hybrid receives an encryption of
|Ŝ⟩ that is |Ŝα̂,β̂⟩ and an encryption of some Pauli keys (α, β) that are different from (α̂, β̂)
with overwhelming probability. But because of the semantic security of QFHE.Enc, this is
indistinguishable from having |Ŝα̂,β̂⟩ and an actual encryption of (α̂, β̂).

From these observations, it follows that we can invoke the security of the QFHE
to argue the indistinguishability of the current and previous hybrids, and in particular
the indistinguishability between their success probabilities. Using the sub-exponential-
advantage security of the QFHE, we have the success probability of G8 is > 2−3λδ−2−2λδ′

>
2−3λδ−1.

At this point of the proof, we can reduce the success probability of an adversary in
G8 to the monogamy-of-entanglement game. We note that the coset game can achieve
sub-exponentially negligible security, say 2−4λδ , if we assume sub-exponential security of
the building blocks (i.e., the indistinguishability obfuscation scheme). Now, any QPT
adversary of G8 can be used to construct a QPT adversary for the coset game as follows.
Specifically, the reduction receives a challenge coset state |Ŝα̂,β̂⟩ and the obfuscated
membership checking programs iO(Ŝ+ α̂), iO(Ŝ⊥+ β̂) from its challenger in the coset game
in. The reduction runs protocol 10 with the adversary. Note that the reduction (playing
the role of the verifier in protocol 10) only needs iO(Ŝ + α̂) and iO(Ŝ⊥ + β̂) to perfectly
simulate the protocol with the adversary. Furthermore, it uses |Ŝα̂,β̂⟩ in the experiment
described above instead of generating the state on its own, when it needs to send a coset
state back to the adversary. When the reduction receives Ŝ from its challenger, it sends

200 Appendix B. Semi-Quantum Unclonable Cryptography -
Supplementary Materials

Ŝ to B, C, and finally the reduction outputs whatever B and C output. (Formally, the
reduction now consists of two non-communicating reductions, each interacts with B and
C respectively.) This is exactly in contradiction to strong monogamy-of-entanglement
security as we presented above.

B.4. Proof of Semi-Quantum Monogamy-Of-Entanglement Property of Protocol 5
201

	Résumé
	Abstract
	Acknowledgments
	Introduction en Français
	Plan et contributions

	Introduction
	Roadmap and Contributions

	Preliminaries
	Classical Preliminaries
	Notations
	Circuits and Algorithms
	Distributions

	Quantum Preliminaries
	Basic Notations
	Usual States and Measurement Bases
	Quantum Gates
	Useful Theorems and Lemmas
	Circuits and Oracles
	Distances

	Cryptographic Preliminaries
	Cryptographic Security Games
	Symmetric Encryption Scheme
	Asymmetric Encryption Scheme
	Digital Signature Scheme
	One-Way Functions and Pseudorandom Functions
	Indistinguishable Obfuscation
	Subspace Hiding Obfuscation
	Compute-and-Compare Obfuscation
	Leveled Hybrid Quantum Fully Homomorphic Encryption

	Unclonable Cryptography
	Introduction
	BB84 and Coset States
	BB84 States
	Conjugate Coding
	Properties of BB84 States

	Coset States
	Definitions
	BB84 States as Coset States
	Advantage of Coset States
	Properties of Coset States

	Quantum Money
	Private Quantum Money
	Definitions
	Wiesner's Quantum Money
	Attacks on the Wiesner Scheme

	Public Quantum Money
	History
	Definitions
	Aaronson and Christiano Mini-Schemes

	Quantum Lightning
	Applications of Quantum Lightning
	Quantum Lightning Constructions

	Tokenized Signatures
	Definitions
	Construction

	Unclonable Encryption
	Private Unclonable Encryption
	Public Unclonable Encryption
	Construction
	One-Time to Many-Time Transformation
	Quantum Money From Unclonable Encryption

	Encryption With Certified Deletion
	Definitions
	Construction
	History of Certified Deletion

	Copy-Protection
	Definitions
	Impossibility Results
	Copy-Protection of Point Functions
	Definitions
	coladangelo2020quantum's construction

	Secure Software Leasing
	Definitions
	Construction

	History of Copy-Protection and Secure Software Leasing
	Single-Decryptor
	Definitions
	Constructions

	Towards Unclonable Cryptography in the Plain Model
	Introduction
	Copy-Protection: From Pseudorandom Functions to Point Functions
	Copy-Protection of Point Functions
	Copy-Protection of Pseudorandom Functions
	Construction

	Unclonable Encryption
	Unclonable Encryption
	Construction

	Locking a Message with Coset States — A Single-Decryptor Construction
	Compute-And-Compare Programs and Obfuscation
	Coset States
	Locking A Message with Coset States
	Single-Decryptor
	Construction
	On the Need for a New Monogamy-Of-Entanglement Property
	Issues with Simultaneous Extraction

	A Copy-Protection Scheme of Pseudorandom Functions in the Plain Model
	High-Level Description
	Construction

	Monogamy-Of-Entanglement Game with Identical Basis
	Proof of Upper-Bound
	Computational Parallelized Version

	Conjectures on Simultaneous Compute-and-Compare Obfuscation
	Original Compute-And-Compare Obfuscation
	Non-Local Context
	Conjectures
	Related Work

	Tokenized Signature in the Plain Model
	Tokenized Signatures
	Definition
	Construction
	Direct Product Hardness with Identical Basis

	Semi-Quantum Unclonable Cryptography
	Introduction
	Delegating Preparation of Coset States — A First Idea Based on Homomorphic Encryption
	Remote Coset State Preparation
	A Protocol Based on Quantum Fully Homomorphic Encryption

	Self-Testing Protocol for BB84 States
	Extended Noisy Trapdoor Claw-Free Function
	Committing Using Claw-Free and Injective Functions
	Self-Testing and Remote Preparation of BB84 States

	Self-Testing Coset States
	Test Round for Coset States
	Self-Testing Protocol for Coset States

	Remote Coset State Preparation
	Hiding a Coset State Round Among BB84 Rounds
	Remote Coset States Preparation for Coset States

	Semi-Quantum Copy-Protection
	Semi-Quantum Copy-Protection of Point Functions
	Construction

	Towards Unclonable Cryptography in the Plain Model - Supplementary Materials
	Copy-Protection of Pseudorandom Functions
	Definitions

	Real-Or-Random Anti-Piracy Security for Single-Decryptors
	Proof of th:cpprf-cllz-rev-ap
	coladangelo2021hidden Construction
	Proof of Reversed Anti-Piracy Security

	Proof of th:moe-coset-ib,th:moe-coset-ib-cpt
	The Coset Version
	The BB84 Version
	Proof of th:newmoebb84
	Computational Version
	Parallel Repetition of the Game
	Proof of Parallel Version of the Monogamy Game

	Semi-Quantum Unclonable Cryptography - Supplementary Materials
	Preliminaries
	Extended Trapdoor Claw-free Functions
	Sampling in a Quantum Population
	Classical Sampling Strategies
	Quantum Sampling Strategies

	Properties of the State-Dependent Distance

	Definitions and Protocols
	Definitions
	Construction

	Rigidity and soundness of prot:bb84-test,prot:coset-test,prot:self-test
	Modeling a General Prover
	Devices
	Success Probabilities of a Device

	Rigidity Proof of prot:bb84-test
	Rigidity Proof of prot:coset-test
	Rigidity Proof of prot:self-test
	Self-Testing Protocol Soundness

	Proof of Semi-Quantum Monogamy-Of-Entanglement Property of prot:rcp
	Monogamy-of-Entanglement Soundness of prot:coset-main

